uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Gaia FGK benchmark stars: new candidates at low metallicities
Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England..
Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England..
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
Univ Bordeaux, CNRS, LAB, UMR 5804, BP 89, F-33270 Floirac, France..
Show others and affiliations
2016 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 592, A70Article in journal (Refereed) Published
Abstract [en]

Context. We have entered an era of large spectroscopic surveys in which we can measure, through automated pipelines, the atmospheric parameters and chemical abundances for large numbers of stars. Calibrating these survey pipelines using a set of "benchmark stars" in order to evaluate the accuracy and precision of the provided parameters and abundances is of utmost importance. The recent proposed set of Gaia FGK benchmark stars has up to five metal-poor stars but no recommended stars within 2.0 < [Fe/H] < -1.0 dex. However, this metallicity regime is critical to calibrate properly. Aims. In this paper, we aim to add candidate Gaia benchmark stars inside of this metal-poor gap. We began with a sample of 21 metal poor stars which was reduced to 10 stars by requiring accurate photometry and parallaxes, and high-resolution archival spectra. Methods. The procedure used to determine the stellar parameters was similar to the previous works in this series for consistency. The difference was to homogeneously determine the angular diameter and effective temperature (T-eff) of all of our stars using the Infrared Flux Method utilizing multi-band photometry. The surface gravity (log g) was determined through fitting stellar evolutionary tracks. The [Fe/H] was determined using four different spectroscopic methods fixing the T-eff and log g from the values determined independent of spectroscopy. Results. We discuss, star-by-star, the quality of each parameter including how it compares to literature, how it compares to a spectroscopic run where all parameters are free, and whether Fe I ionisation-excitation balance is achieved. Conclusions. From the 10 stars, we recommend a sample of five new metal-poor benchmark candidate stars which have consistent T-eff, log g, and [Fe/H] determined through several means. These stars, which are within -1.3 < [Fe/H] < 1.0, can be used for calibration and validation purpose of stellar parameter and abundance pipelines and should be of highest priority for future interferometric studies.

Place, publisher, year, edition, pages
2016. Vol. 592, A70
Keyword [en]
stars: fundamental parameters, techniques: spectroscopic, standards
National Category
Astronomy, Astrophysics and Cosmology
URN: urn:nbn:se:uu:diva-308789DOI: 10.1051/0004-6361/201628268ISI: 000384722600095OAI: oai:DiVA.org:uu-308789DiVA: diva2:1053184
Swedish National Space BoardEU, FP7, Seventh Framework Programme
Available from: 2016-12-08 Created: 2016-11-30 Last updated: 2016-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Heiter, Ulrike
By organisation
Department of Physics and Astronomy
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 65 hits
ReferencesLink to record
Permanent link

Direct link