uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Large-scale recording of thalamocortical circuits: in vivo electrophysiology with the two-dimensional electronic depth control silicon probe
Hungarian Acad Sci, Res Ctr Nat Sci, Inst Cognit Neurosci & Psychol, Grp Comparat Psychophysiol, Budapest, Hungary.;Pazmany Peter Catholic Univ, Fac Informat Technol & Bion, Budapest, Hungary.;Semmelweis Univ, Sch PhD Studies, Budapest, Hungary..
Pazmany Peter Catholic Univ, Fac Informat Technol & Bion, Budapest, Hungary..
Hungarian Acad Sci, Res Ctr Nat Sci, Inst Cognit Neurosci & Psychol, Grp Comparat Psychophysiol, Budapest, Hungary.;Pazmany Peter Catholic Univ, Fac Informat Technol & Bion, Budapest, Hungary.;Semmelweis Univ, Sch PhD Studies, Budapest, Hungary..
Hungarian Acad Sci, Res Ctr Nat Sci, Inst Cognit Neurosci & Psychol, Grp Comparat Psychophysiol, Budapest, Hungary..
Show others and affiliations
2016 (English)In: Journal of Neurophysiology, ISSN 0022-3077, E-ISSN 1522-1598, Vol. 116, no 5, 2312-2330 p.Article in journal (Refereed) Published
Abstract [en]

Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single-and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study.

Place, publisher, year, edition, pages
2016. Vol. 116, no 5, 2312-2330 p.
Keyword [en]
electronic depth control, silicon probe, high-density recording, thalamocortical oscillation, optogenetics
National Category
Neurology Engineering and Technology
Identifiers
URN: urn:nbn:se:uu:diva-310768DOI: 10.1152/jn.00318.2016ISI: 000387983300026PubMedID: 27535370OAI: oai:DiVA.org:uu-310768DiVA: diva2:1057909
Funder
EU, European Research Council, 600925 IST-027017
Available from: 2016-12-19 Created: 2016-12-19 Last updated: 2017-01-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Neves, Hercules P.
By organisation
Solid State Electronics
In the same journal
Journal of Neurophysiology
NeurologyEngineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 34 hits
ReferencesLink to record
Permanent link

Direct link