uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Assessing Electrochemical Properties of Polypyridine and Polythiophene for Prospective Application in Sustainable Organic Batteries
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory. Hindustan Univ, Ctr Clean Energy & Nanoconvergence, Madras, Tamil Nadu, India.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
Show others and affiliations
2017 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 19, no 4, 3307-3314 p.Article in journal (Refereed) Published
Abstract [en]

Conducting polymers are being considered promising candidates for sustainable organic batteries mainly due to their fast electron transport properties and high recyclability. In this work, key properties of polythiophene and polypyridine have been assessed through a combined theoretical and experimental study focusing on such applications. A theoretical protocol has been developed to calculate redox potentials in solution within the framework of the density functional theory and using continuous solvation models. Here, the evolution of the electrochemical properties of solvated oligomers as a function of the length of the chain is analyzed and then the polymer properties are estimated via linear regressions using ordinary least square. The predicted values were verified against our electrochemical experiments. This protocol can now be employed to screen a large database of compounds in order to identify organic electrodes with superior properties.

Place, publisher, year, edition, pages
2017. Vol. 19, no 4, 3307-3314 p.
National Category
Nano Technology
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
URN: urn:nbn:se:uu:diva-311276DOI: 10.1039/C6CP07435AISI: 000394940400071PubMedID: 28091636OAI: oai:DiVA.org:uu-311276DiVA: diva2:1059479
Funder
Swedish Foundation for Strategic Research Swedish Energy AgencyStandUpSwedish Research Council
Available from: 2016-12-22 Created: 2016-12-22 Last updated: 2017-04-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Araujo, Rafael B.Banerjee, AmitavaYang, LiSjödin, MartinStrömme, MariaAraujo, C. MoysesAhuja, Rajeev
By organisation
Materials TheoryNanotechnology and Functional Materials
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 405 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf