uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Recognition of spatial motifs in protein structures
Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Biology, Department of Cell and Molecular Biology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Biology, Department of Cell and Molecular Biology, Structural Molecular Biology.
1999 (English)In: JOURNAL OF MOLECULAR BIOLOGY, ISSN 0022-2836, Vol. 285, no 4, 1887-1897 p.Article in journal (Refereed) Published
Abstract [en]

As the structural database continues to expand, new methods are required to analyse and compare protein structures. Whereas the recognition, comparison, and classification of folds is now more or less a solved problem, tools for the study of constellations of small numbers of residues are few and far between. In this paper, two programs are described for the analysis of spatial motifs in protein structures. The first, SPASM, can be used to find the occurrence of a motif consisting of arbitrary main-chain and/or side-chains in a database of protein structures. The program also has a unique capability to carry out "fuzzy pattern matching" with relaxed requirements on the types of some or all of the matching residues. The second program, RIGOR, scans a single protein structure for the occurrence of any of a set of pre-defined motifs from a database. In one application, spatial motif recognition combined with profile analysis enabled the assignment of the structural and functional class of an uncharacterised hypothetical protein in the sequence database. In another application, the occurrence of short left-handed helical segments in protein structures was investigated, and such segments were found to be fairly common. Potential applications of the techniques presented here lie in the analysis of (newly determined) structures, in comparative structural analysis, in the design and engineering of novel functional sites, and in the prediction of structure and function of uncharacterised proteins. Copyright 1999 Academic Press.

Place, publisher, year, edition, pages
1999. Vol. 285, no 4, 1887-1897 p.
Keyword [en]
alanine racemase; lipid-binding protein; pattern recognition; protein structure; spatial motif; 3D COORDINATE TEMPLATES; SEQUENCE PATTERNS; CRYSTAL-STRUCTURE; BINDING-SITES; 3-DIMENSIONAL PATTERNS; PROFILE ANALYSIS; SIDE-CHAINS; DATA-BANK; ACID; IDENTIFIC
Identifiers
URN: urn:nbn:se:uu:diva-78984OAI: oai:DiVA.org:uu-78984DiVA: diva2:106897
Available from: 2006-12-15 Created: 2006-12-15 Last updated: 2011-01-14

Open Access in DiVA

No full text

By organisation
Department of Cell and Molecular BiologyStructural Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 426 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf