uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mechanistic Investigation of Charge Transport in a Conducting Redox Polymer
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. (Nanoteknologi och Funktionella Material)
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. (Nanoteknologi och Funktionella Material)
(Department of Chemistry – Ångström)
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Herein we report a mechanistic study of the charge transport in poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole by conductance measurements at various temperatures performed in situ during doping of the polypyrrole backbone in contact with an aqueous electrolyte. Charge transport was found to occur by electron hopping with associated electron transfer activation energies in the range of 0.08 – 0.2 eV. In situ EPR experiments indicated polarons as the dominant charge carriers and the charge transport was found to follow a second-order dependence with respect to the number of accumulated charges. Based on the findings two plausible charge transport mechanisms are suggested for the electronic conduction in poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole.

National Category
Nano Technology
Identifiers
URN: urn:nbn:se:uu:diva-316489OAI: oai:DiVA.org:uu-316489DiVA: diva2:1077951
Available from: 2017-03-01 Created: 2017-03-01 Last updated: 2017-03-13
In thesis
1. Quinone-Pyrrole Dyad Based Polymers for Organic Batteries: From Design to Application
Open this publication in new window or tab >>Quinone-Pyrrole Dyad Based Polymers for Organic Batteries: From Design to Application
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Organic electrode materials are finding increasing use in energy storage devices due to their attractive properties that allow building of flexible and low weight devices in an environmentally friendlier manner than traditional alternatives. Among these organic electrode materials, conducting redox polymers (CRPs), consisting of conducing polymer (CP) with covalently attached redox active pendant groups (PG), have attracted our interests. This is due to the advantageous synergy between CP and PG, e.g. electronic conductivity, high stability and large charge storage capacity. In this thesis polypyrrole has been selected as CP and quinones as PGs. A series of quinone-pyrrole dyad polymers has been synthesized with a variety of quinone substituents, demonstrating the adjustability of quinone formal potentials by choice of substituents. Importantly, in this series we show that the CP-PG redox match, i.e. that the formal potential of the PG is within the conducting region of the CP, is a requirement for fast charge transfer from the electrode to the PGs. Moreover, a series of quinone-pyrrole dyad polymers with various linkers was synthesized, showing that the choice of linker has a pronounced impact on the interactions between the PG and CP. In addition, the temperature dependence of conductance during doping of the polymers reveals the charge transport mechanism. To summarize, the adjustability of the quinone formal potential as well as the fast charge transport in the bulk material ensures the applicability of the CRPs as electrode materials in organic batteries.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. 73 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1483
Keyword
Organic battery, conducting polymer, quinone, polypyrrole, spectroelectrochemistry, conductance
National Category
Nano Technology
Identifiers
urn:nbn:se:uu:diva-316492 (URN)978-91-554-9832-0 (ISBN)
Public defence
2017-04-21, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2017-03-30 Created: 2017-03-01 Last updated: 2017-04-18

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Hao, HuangKarlsson, ChristofferStrømme, MariaGogoll, AdolfSjödin, Martin
By organisation
Nanotechnology and Functional MaterialsDepartment of Chemistry - BMC
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

Total: 227 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf