uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Potential Tuning in Quinone-pyrrole Dyad Based Conducting Redox Polymers
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. (Nanoteknologi och Funktionella Material)
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
(English)Manuscript (preprint) (Other academic)
Abstract [en]

In this study, conducting redox polymers (CRPs), which consist of a polypyrrole conducting polymer (CP) backbone with attached quinone pendant groups (PGs), have been explored as electrode materials for organic batteries. A modular organic synthetic approach allows the assembly of the pyrrole and quinone units into quinone-pyrrole dyads. These dyad monomers were copolymerized electrochemically with pyrrole to yield the CRPs. DFT calculations were used to predict the formal potentials of the dyads, showing excellent agreement with the experimental values of the corresponding CRPs. Moreover, it is shown that the matching between the redox potential of PGs and the conductive region of CPs is an absolute requirement for good performance of these materials. With access to CRP materials with varying quinone formal potentials a prototype of a full organic based battery was constructed by choosing two CRPs with different quinone potentials. A galvanostatic charge-discharge study showed that the cell potentials coincided well with the difference in redox potential between the quinone substituents used in the anode and cathode CRP.

National Category
Nano Technology Organic Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-316491OAI: oai:DiVA.org:uu-316491DiVA: diva2:1077953
Available from: 2017-03-01 Created: 2017-03-01 Last updated: 2017-03-13
In thesis
1. Quinone-Pyrrole Dyad Based Polymers for Organic Batteries: From Design to Application
Open this publication in new window or tab >>Quinone-Pyrrole Dyad Based Polymers for Organic Batteries: From Design to Application
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Organic electrode materials are finding increasing use in energy storage devices due to their attractive properties that allow building of flexible and low weight devices in an environmentally friendlier manner than traditional alternatives. Among these organic electrode materials, conducting redox polymers (CRPs), consisting of conducing polymer (CP) with covalently attached redox active pendant groups (PG), have attracted our interests. This is due to the advantageous synergy between CP and PG, e.g. electronic conductivity, high stability and large charge storage capacity. In this thesis polypyrrole has been selected as CP and quinones as PGs. A series of quinone-pyrrole dyad polymers has been synthesized with a variety of quinone substituents, demonstrating the adjustability of quinone formal potentials by choice of substituents. Importantly, in this series we show that the CP-PG redox match, i.e. that the formal potential of the PG is within the conducting region of the CP, is a requirement for fast charge transfer from the electrode to the PGs. Moreover, a series of quinone-pyrrole dyad polymers with various linkers was synthesized, showing that the choice of linker has a pronounced impact on the interactions between the PG and CP. In addition, the temperature dependence of conductance during doping of the polymers reveals the charge transport mechanism. To summarize, the adjustability of the quinone formal potential as well as the fast charge transport in the bulk material ensures the applicability of the CRPs as electrode materials in organic batteries.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. 73 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1483
Keyword
Organic battery, conducting polymer, quinone, polypyrrole, spectroelectrochemistry, conductance
National Category
Nano Technology
Identifiers
urn:nbn:se:uu:diva-316492 (URN)978-91-554-9832-0 (ISBN)
Public defence
2017-04-21, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2017-03-30 Created: 2017-03-01 Last updated: 2017-04-18

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Hao, HuangStrømme, MariaGogoll, AdolfSjödin, Martin
By organisation
Nanotechnology and Functional MaterialsDepartment of Chemistry - BMC
Nano TechnologyOrganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

Total: 271 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf