uu.seUppsala University Publications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt817",{id:"formSmash:upper:j_idt817",widgetVar:"widget_formSmash_upper_j_idt817",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt818_j_idt820",{id:"formSmash:upper:j_idt818:j_idt820",widgetVar:"widget_formSmash_upper_j_idt818_j_idt820",target:"formSmash:upper:j_idt818:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

The integral equation for the American put boundary in models with jumpsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); (English)Article in journal (Other academic) Submitted
##### Abstract [en]

##### National Category

Probability Theory and Statistics
##### Research subject

Mathematics with specialization in Applied Mathematics
##### Identifiers

URN: urn:nbn:se:uu:diva-316576OAI: oai:DiVA.org:uu-316576DiVA: diva2:1078315
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1107",{id:"formSmash:j_idt1107",widgetVar:"widget_formSmash_j_idt1107",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1113",{id:"formSmash:j_idt1113",widgetVar:"widget_formSmash_j_idt1113",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1119",{id:"formSmash:j_idt1119",widgetVar:"widget_formSmash_j_idt1119",multiple:true});
Available from: 2017-03-03 Created: 2017-03-03 Last updated: 2017-03-14
##### In thesis

The price of the American put option is frequently studied as the solution to an associated free-boundary problem. This free boundary, the optimal exercise boundary, determines the value of the option. In spectrally negative models the early exercise premium representation for the value of the option gives rise to an integral equation for the boundary. We study this integral equation and prove that the optimal exercise boundary is the unique solution and thus that the equation characterizes the free boundary. In a spectrally positive model, this approach does not give an equation for the boundary. We instead find lower and upper bounds for the true boundary which can be found by solving related equations.

1. Valuation and Optimal Strategies in Markets Experiencing Shocks$(function(){PrimeFaces.cw("OverlayPanel","overlay1081367",{id:"formSmash:j_idt1380:0:j_idt1384",widgetVar:"overlay1081367",target:"formSmash:j_idt1380:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1840",{id:"formSmash:lower:j_idt1840",widgetVar:"widget_formSmash_lower_j_idt1840",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1841_j_idt1843",{id:"formSmash:lower:j_idt1841:j_idt1843",widgetVar:"widget_formSmash_lower_j_idt1841_j_idt1843",target:"formSmash:lower:j_idt1841:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});