uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On Monolayer Formation of Pyrenebutyric Acid on Graphene
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
Show others and affiliations
(English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827Article in journal (Refereed) Submitted
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-317087OAI: oai:DiVA.org:uu-317087DiVA: diva2:1080390
Available from: 2017-03-10 Created: 2017-03-10 Last updated: 2017-11-29
In thesis
1. On the Road to Graphene Biosensors
Open this publication in new window or tab >>On the Road to Graphene Biosensors
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Biosensors are devices that detect biological elements and then transmit a readable signal. Biosensors can automatize diagnostics that would otherwise have to be performed by a physician or perhaps not be possible to perform at all. Current biosensors are however either limited to particular diseases or prohibitively expensive. In order to further the field, sensors capable of many parallel measurements at a lower cost need to be developed. Field effect transistor (FET) based sensors are possible candidates for delivering this, mainly by allowing miniaturization. Smaller sensors could be cheaper, and enable parallel measurements.

Graphene is an interesting material to use as the channel of FET-sensors. The low electrochemical reactivity of its plane makes it possible to have graphene in direct contact with the sample liquid, which enhances the signal from impedance changes. Graphene-FET based impedance sensors should be able to sense almost all possible analytes and allow for scaling without losing sensitivity.

In this work the steps needed to make graphene based biosensors are presented. An improved graphene transfer is described which by using low pressure to dry the graphene removes most contamination. A method to measure the contamination of graphene by surface enhanced Raman scattering is presented. Methods to produce double gated and electrolyte gated graphene transistors on a large scale in an entirely photolithographic process are detailed. The deposition of 1-pyrenebutyric acid (PBA) on graphene is studied. It is shown that at high surface concentrations the PBA stands up on graphene and forms a dense self-assembled monolayer. A new process of using Raman spectroscopy data to quantify adsorbents was developed in order to quantify the molecule adsorption. Biosensing has been performed in two different ways. Graphene FETs have been used to read the signal generated by a streaming potential setup. Using FETs in this context enables a more sensitive readout than what would be possible without them. Graphene FETs have been used to directly sense antibodies in high ionic strength. This sensing was done by measuring the impedance of the interface between the FET and the electrolyte.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. 68 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1488
Keyword
Graphene, Biosensors, Microprocessing, Photolithography, Surface Physics, Raman Spectroscopy, Transistors
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Engineering Science with specialization in Electronics
Identifiers
urn:nbn:se:uu:diva-317092 (URN)978-91-554-9845-0 (ISBN)
Public defence
2017-04-28, Polhemssalen/10134, Ångströmslaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:00 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg Foundation, 2011.0113Swedish Research Council, VR, No.621-2014-5591
Available from: 2017-04-07 Created: 2017-03-10 Last updated: 2017-04-21

Open Access in DiVA

No full text

By organisation
Solid State ElectronicsMaterials Theory
In the same journal
Langmuir
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 364 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf