uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Incorporation of Mg and Ca into Nanostructured Fe2O3 Improves Fe Solubility in Dilute Acid and Sensory Characteristics in Foods
Swiss Fed Inst Technol, Human Nutr Lab, Insti Food Nutr & Hlth, CH-8092 Zurich, Switzerland..
Swiss Fed Inst Technol, Particle Technol Lab, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland..
Swiss Fed Inst Technol, Particle Technol Lab, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland..
Swiss Fed Inst Technol, Electron Microscopy Ctr EMEZ, CH-8093 Zurich, Switzerland..
Show others and affiliations
2011 (English)In: Journal of Food Science, ISSN 0022-1147, E-ISSN 1750-3841, Vol. 76, no 1, N2-N10 p.Article in journal (Refereed) Published
Abstract [en]

Iron deficiency is one of the most common micronutrient deficiencies worldwide. Food fortification can be an effective and sustainable strategy to reduce Fe deficiency but selection of iron fortificants remains a challenge. Water-soluble compounds, for example, FeSO4, usually demonstrate high bioavailability but they often cause unacceptable sensory changes in foods. On the other hand, poorly acid-soluble Fe compounds, for example FePO4, may cause fewer adverse sensory changes in foods but are usually not well bioavailable since they need to be dissolved in the stomach prior to absorption. The solubility and the bioavailability of poorly acid-soluble Fe compounds can be improved by decreasing their primary particle size and thereby increasing their specific surface area. Here, Fe oxide-based nanostructured compounds with added Mg or Ca were produced by scalable flame aerosol technology. The compounds were characterized by nitrogen adsorption, X-ray diffraction, transmission electron microscopy, and Fe solubility in dilute acid. Sensory properties of the Fe-based compounds were tested in 2 highly reactive, polyphenol-rich food matrices: chocolate milk and fruit yoghurt. The Fe solubility of nanostructured Fe2O3 doped with Mg or Ca was higher than that of pure Fe2O3. Since good solubility in dilute acid was obtained despite the inhomogeneity of the powders, inexpensive precursors, for example Fe- and Ca-nitrates, can be used for their manufacture. Adding Mg or Ca lightened powder color, while sensory changes when added to foods were less pronounced than for FeSO4. The combination of high Fe solubility and low reactivity in foods makes these flame-made nanostructured compounds promising for food fortification.

Place, publisher, year, edition, pages
2011. Vol. 76, no 1, N2-N10 p.
Keyword [en]
iron, nanotechnology, sensory, solubility, structure
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:uu:diva-317824DOI: 10.1111/j.1750-3841.2010.01885.xISI: 000286210200007PubMedID: 21535701OAI: oai:DiVA.org:uu-317824DiVA: diva2:1083110
Available from: 2017-03-20 Created: 2017-03-20 Last updated: 2017-03-20

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Teleki, Alexandra
In the same journal
Journal of Food Science
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 104 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf