uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
CRYSTAL-STRUCTURES OF CELLULAR RETINOIC ACID-BINDING PROTEIN-I AND PROTEIN-II IN COMPLEX WITH ALL-TRANS-RETINOIC ACID AND A SYNTHETIC RETINOID
Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Biology, Department of Cell and Molecular Biology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Biology, Department of Cell and Molecular Biology, Structural Molecular Biology.
Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Biology, Department of Cell and Molecular Biology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Biology, Department of Cell and Molecular Biology, Structural Molecular Biology.
Show others and affiliations
1994 (English)In: STRUCTURE, ISSN 0969-2126, Vol. 2, no 12, p. 1241-1258Article in journal (Refereed) Published
Abstract [en]

BACKGROUND: Retinoic acid (RA) plays a fundamental role in diverse cellular activities. Cellular RA binding proteins (CRABPs) are thought to act by modulating the amount of RA available to nuclear RA receptors. CRABPs and cellular retinol-binding proteins (CRBPs) share a unique fold of two orthogonal beta-sheets that encapsulate their ligands. It has been suggested that a trio of residues are the prime determinants defining the high specificity of CRBPs and CRABPs for their physiological ligands. RESULTS: Bovine/murine CRABP I and human CRABP II have been crystallized in complex with their natural ligand, all-trans-RA. Human CRABP II has also been crystallized in complex with a synthetic retinoid, 'compound 19'. Their structures have been determined and refined at resolutions of 2.9 A, 1.8 A and 2.2 A, respectively. CONCLUSIONS: The retinoid-binding site in CRABPs differs significantly from that observed in CRBP. Structural changes in three juxtaposed areas of the protein create a new, displaced binding site for RA. The carboxylate of the ligand interacts with the expected trio of residues (Arg132, Tyr134 and Arg111; CRABP II numbering). The RA ligand is almost flat with the beta-ionone ring showing a significant deviation (-33 degrees) from a cis conformation relative to the isoprene tail. The edge atoms of the beta-ionone ring are accessible to solvent in a suitable orientation for presentation to metabolizing enzymes. The bulkier synthetic retinoid causes small conformational changes in the protein structure.

Place, publisher, year, edition, pages
1994. Vol. 2, no 12, p. 1241-1258
Keyword [en]
ALL-TRANS-RETINOIC ACID; CHIRAL SEPARATOR; MOLECULAR RECOGNITION; RETINOIC ACID BINDING PROTEINS; NUCLEAR-MAGNETIC-RESONANCE; SITE-DIRECTED MUTAGENESIS; P2 MYELIN PROTEIN; ESCHERICHIA-COLI; CRABP-I; 3-DIMENSIONAL STRUCTURE; CRYSTALLOGRAPHIC REFINEMENT; MO
Identifiers
URN: urn:nbn:se:uu:diva-80598OAI: oai:DiVA.org:uu-80598DiVA, id: diva2:108512
Available from: 2006-12-15 Created: 2006-12-15 Last updated: 2011-01-15

Open Access in DiVA

No full text in DiVA

Authority records BETA

BERGFORS, T

Search in DiVA

By author/editor
BERGFORS, T
By organisation
Department of Cell and Molecular BiologyStructural Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 497 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf