uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Lower hybrid waves in the ion diffusion and magnetospheric inflow regions
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Space Plasma Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Show others and affiliations
2017 (English)In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, no 1, 517-533 p.Article in journal (Refereed) Published
Abstract [en]

The role and properties of lower hybrid waves in the ion diffusion region and magnetospheric inflow region of asymmetric reconnection are investigated using the Magnetospheric Multiscale (MMS) mission. Two distinct groups of lower hybrid waves are observed in the ion diffusion region and magnetospheric inflow region, which have distinct properties and propagate in opposite directions along the magnetopause. One group develops near the ion edge in the magnetospheric inflow, where magnetosheath ions enter the magnetosphere through the finite gyroradius effect and are driven by the ion-ion cross-field instability due to the interaction between the magnetosheath ions and cold magnetospheric ions. This leads to heating of the cold magnetospheric ions. The second group develops at the sharpest density gradient, where the Hall electric field is observed and is driven by the lower hybrid drift instability. These drift waves produce cross-field particle diffusion, enabling magnetosheath electrons to enter the magnetospheric inflow region thereby broadening the density gradient in the ion diffusion region.

Place, publisher, year, edition, pages
AMER GEOPHYSICAL UNION , 2017. Vol. 122, no 1, 517-533 p.
Keyword [en]
Magnetic reconnection, Ion diffusion region, Lower hybrid waves
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:uu:diva-319788DOI: 10.1002/2016JA023572ISI: 000395655800038OAI: oai:DiVA.org:uu-319788DiVA: diva2:1088266
Funder
Swedish National Space Board
Available from: 2017-04-12 Created: 2017-04-12 Last updated: 2017-04-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Graham, Daniel B.Khotyaintsev, Yuri V.Norgren, CeciliaVaivads, AndrisAndré, Mats
By organisation
Swedish Institute of Space Physics, Uppsala DivisionSpace Plasma Physics
In the same journal
Journal of Geophysical Research - Space Physics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 226 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf