uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A low-spin Fe(III) complex with 100-ps ligand-to-metal charge transfer photoluminescence
Lund Univ, Dept Chem, Div Phys Chem, Box 124, SE-22100 Lund, Sweden..
Lund Univ, Dept Chem, CAS, Box 124, SE-22100 Lund, Sweden..
Lund Univ, Dept Chem, CAS, Box 124, SE-22100 Lund, Sweden..
Lund Univ, Dept Chem, Div Phys Chem, Box 124, SE-22100 Lund, Sweden..
Show others and affiliations
2017 (English)In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 543, no 7647, 695-+ p.Article in journal (Refereed) Published
Abstract [en]

Transition-metal complexes are used as photosensitizers(1), in light-emitting diodes, for biosensing and in photocatalysis(2). A key feature in these applications is excitation from the ground state to a charge-transfer state(3,4); the long charge-transfer-state lifetimes typical for complexes of ruthenium(5) and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron(6) and copper(7) being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs(6,8-10), it remains a formidable scientific challenge(11) to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered(12) photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers(13-15). Here we present the iron complex [Fe(btz)(3)](3+) (where btz is 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene)), and show that the superior sigma-donor and pi-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(III) d(5) complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer ((LMCT)-L-2) state that is rarely seen for transition-metal complexes(4,16,17). The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers.

Place, publisher, year, edition, pages
NATURE PUBLISHING GROUP , 2017. Vol. 543, no 7647, 695-+ p.
National Category
Chemical Sciences Engineering and Technology
Identifiers
URN: urn:nbn:se:uu:diva-320033DOI: 10.1038/nature21430ISI: 000397619700051PubMedID: 28358064OAI: oai:DiVA.org:uu-320033DiVA: diva2:1088581
Funder
Knut and Alice Wallenberg FoundationSwedish Energy AgencyThe Crafoord FoundationSwedish National Infrastructure for Computing (SNIC)Stiftelsen Olle Engkvist Byggmästare
Available from: 2017-04-13 Created: 2017-04-13 Last updated: 2017-04-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Ericson, FredricHäggström, LennartEricsson, ToreSobkowiak, AdamHuang, PingStyring, StenbjörnLomoth, Reiner
By organisation
Microsystems TechnologyMaterials PhysicsStructural ChemistryMolecular BiomimeticsPhysical Chemistry
In the same journal
Nature
Chemical SciencesEngineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 824 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf