uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On-chip growth of patterned ZnO nanorod sensors with PdO decoration for enhancement of hydrogen-sensing performance
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

In this study, we used a low-temperature hydrothermal technique to fabricate arrays of sensors with ZnO nanorods grown on-chip. The sensors on the glass substrate then were sputter decorated with Pd at thicknesses of 2, 4, and 8 nm and annealed at 650 °C in air for an hour. Scanning electron microscopy, high resolution transmission microscopy, X-ray diffraction, and surface analysis by X-ray photoelectron spectroscopy characterization demonstrated that decoration of homogenous PdO nanoparticles on the surface of ZnO nanorods had been achieved. The sensors were tested against three reducing gases, namely hydrogen, ethanol, and ammonia, at 350, 400, and 450 °C. The ZnO nanorods decorated with PdO particles from the 2 and 4 nm layers showed the highest responses to H2 at 450 and 350 °C, respectively. These samples also generally exhibited better selectivity for hydrogen than for ethanol and ammonia at the same concentrations and at all tested temperatures. However, the ZnO nanorods decorated with PdO particles from the 8 nm layer showed a reverse sensing behaviour compared with the first two. The sensing mechanism behind these phenomena is discussed in the light of the spillover effect of hydrogen in contact with the PdO particles as well as the negative competition of the PdO thin film formed between the sensor electrodes during sputter decoration, Pd-Zn heterojunction that forms at high temperature and thus influences the conductivity of the ZnO nanorods.

Keyword [en]
Hydrogen-sensing at high temperature; On-chip hydrothermal growth; ZnO nanorods; Sputter-decoration; PdO nanoparticles
National Category
Other Materials Engineering
Identifiers
URN: urn:nbn:se:uu:diva-320156OAI: oai:DiVA.org:uu-320156DiVA: diva2:1088834
Available from: 2017-04-16 Created: 2017-04-16 Last updated: 2017-04-24
In thesis
1.
The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.

Open Access in DiVA

No full text

Other Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

Total: 7 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf