uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Compensating for delayed hatching reduces offspring immune response and increases life-history costs
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology. Christian Albrechts Univ Kiel, Inst Zool, Kiel, Germany..
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.ORCID iD: 0000-0002-6748-966X
2017 (English)In: Oikos, ISSN 0030-1299, E-ISSN 1600-0706, Vol. 126, no 4, 565-571 p.Article in journal (Refereed) Published
Abstract [en]

Organisms are exposed to multiple sources of stress in nature. When confronted with a stressful period affecting growth and development, compensatory responses allow the restoration of individual fitness, providing an important buffering mechanism against climatic and other environmental variability. However, tradeoffs between increased growth/development and other physiological traits are predicted to prevent these high growth and development rates from becoming constitutive. Here, we investigated how compensatory responses in growth and development affect immune responses. By using low temperature to stop embryonic development, we exposed moor frog Rana arvalis tadpoles to two levels of time-constraints: non-delayed hatching and 12-day delayed hatching. In a common garden experiment, we recorded larval growth and development, as well as their immune response, measured as the inflammatory reaction after the injection of phytohaemagglutinin (PHA). Tadpoles originating from delayed hatching treatments had a lower immune response to PHA challenge than those from the non-delayed hatching treatment. In general, tadpoles from the delayed hatching treatment reached metamorphosis faster and at a smaller size than control tadpoles. However, immune-challenged tadpoles were not able to accelerate their development in response to delayed hatching. Our results indicate that 1) the innate immune response can be reduced in organisms undergoing compensatory developmental responses in growth and development and 2) compensatory capacity can be reduced when organisms are immunologically challenged. These dual findings reveal the complexity of handling multiple stressors and highlight the importance of examining the costs and limits of mounting an immune response in the context of increasing phenological instability ascribed to climate change.

Place, publisher, year, edition, pages
2017. Vol. 126, no 4, 565-571 p.
National Category
Ecology
Identifiers
URN: urn:nbn:se:uu:diva-321443DOI: 10.1111/oik.04014ISI: 000398117500011OAI: oai:DiVA.org:uu-321443DiVA: diva2:1093139
Available from: 2017-05-05 Created: 2017-05-05 Last updated: 2017-05-31Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Laurila, AnssiOrizaola, Germán
By organisation
Animal ecology
In the same journal
Oikos
Ecology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 155 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf