uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparing and contrasting dispersionless injections at geosynchronous orbit during a substorm event
Max Planck Inst Solar Syst Res, Gottingen, Germany.;Ludwig Maximilian Univ Munich, Dept Earth & Environm Sci Geophys, Munich, Germany..
Russian Acad Sci, Space Res Inst, Moscow, Russia..
Aerosp Corp, El Segundo, CA 90245 USA..
Max Planck Inst Solar Syst Res, Gottingen, Germany..
Show others and affiliations
2017 (English)In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, no 3, 3055-3072 p.Article in journal (Refereed) Published
Abstract [en]

Particle injections in the magnetosphere transport electrons and ions from the magnetotail to the radiation belts. Here we consider generation mechanisms of dispersionless injections, namely, those with simultaneous increase of the particle flux over a wide energy range. In this study we take advantage of multisatellite observations which simultaneously monitor Earth's magnetospheric dynamics from the tail toward the radiation belts during a substorm event. Dispersionless injections are associated with instabilities in the plasma sheet during the growth phase of the substorm, with a dipolarization front at the onset and with magnetic flux pileup during the expansion phase. They show different spatial spread and propagation characteristics. Injection associated with the dipolarization front is the most penetrating. At geosynchronous orbit (6.6R(E)), the electron distributions do not have a classic power law fit but instead a bump on tail centered on similar to 120keV during dispersionless electron injections. However, electron distributions of injections associated with magnetic flux pileup in the magnetotail (13R(E)) do not show such a signature. We surmise that an additional resonant acceleration occurs in between these locations. We relate the acceleration mechanism to the electron drift resonance with ultralow frequency waves localized in the inner magnetosphere.

Place, publisher, year, edition, pages
AMER GEOPHYSICAL UNION , 2017. Vol. 122, no 3, 3055-3072 p.
Keyword [en]
particle injections, substorm, acceleration, dipolarization, current wedge, ULF waves
National Category
Astronomy, Astrophysics and Cosmology Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:uu:diva-321992DOI: 10.1002/2016JA023551ISI: 000399710900018OAI: oai:DiVA.org:uu-321992DiVA: diva2:1095617
Available from: 2017-05-15 Created: 2017-05-15 Last updated: 2017-05-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Khotyaintsev, Yuri V.
By organisation
Swedish Institute of Space Physics, Uppsala Division
In the same journal
Journal of Geophysical Research - Space Physics
Astronomy, Astrophysics and CosmologyFusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf