uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Theoretical simulations of oxygen K-edge resonant inelastic x-ray scattering of kaolinite
Stockholm Univ, AlbaNova Univ Ctr, Dept Phys, S-10691 Stockholm, Sweden..
Royal Inst Technol, Theoret Chem & Biol, S-10691 Stockholm, Sweden.;Siberian Fed Univ, Inst Nanotechnol Spect & Quantum Chem, Krasnoyarsk 660041, Russia..
Royal Inst Technol, Theoret Chem & Biol, S-10691 Stockholm, Sweden.;Siberian Fed Univ, Inst Nanotechnol Spect & Quantum Chem, Krasnoyarsk 660041, Russia..
Lund Univ, MAX Lab 4, S-22100 Lund, Sweden..
Show others and affiliations
2017 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 95, no 14, 144301Article in journal (Refereed) Published
Abstract [en]

Near-edge x-ray absorption fine structure (NEXAFS) and resonant inelastic x-ray scattering (RIXS) measurements at the oxygen K edge were combined with theoretical spectrum simulations, based on periodic density functional theory and nuclear quantum dynamics, to investigate the electronic structure and chemical bonding in kaolinite Al2Si2O5(OH)(4). We simulated NEXAFS spectra of all crystallographically inequivalent oxygen atoms in the crystal and RIXS spectra of the hydroxyl groups. Detailed insight into the ground-state potential energy surface of the electronic states involved in the RIXS process were accessed by analyzing the vibrational excitations, induced by the core excitation, in quasielastic scattering back to the electronic ground state. In particular, we find that the NEXAFS pre-edge is dominated by features related to OH groups within the silica and alumina sheets, and that the vibrational progression in RIXS can be used to selectively probe vibrational modes of this subclass of OH groups. The signal is dominated by the OH stretching mode, but also other lower vibrational degrees of freedom, mainly hindered rotational modes, contribute to the RIXS signal.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC , 2017. Vol. 95, no 14, 144301
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:uu:diva-322191DOI: 10.1103/PhysRevB.95.144301ISI: 000399382500002OAI: oai:DiVA.org:uu-322191DiVA: diva2:1096085
Funder
Swedish Research CouncilCarl Tryggers foundation EU, European Research Council, 669531Knut and Alice Wallenberg Foundation, KAW-2013.0020
Available from: 2017-05-17 Created: 2017-05-17 Last updated: 2017-05-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Rubensson, Jan-Erik

Search in DiVA

By author/editor
Rubensson, Jan-Erik
By organisation
Molecular and Condensed Matter Physics
In the same journal
Physical Review B
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 244 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf