uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Crystal and magnetic structure investigation of TbNi5-xCux (x=0,0.5,1.0,1.5,2.0): Experiment and theory
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry.
Show others and affiliations
2006 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 74, no 9, 094419- p.Article in journal (Refereed) Published
Abstract [en]

The effect of Cu substitution on the structural and magnetic properties of TbNi5-xCux (x=0,0.5,1.0,1.5,2.0) have been investigated by x-ray diffraction, magnetization measurements and neutron powder and single crystal diffraction. The electronic and the magnetic structures of TbNi5 were studied using first principles theory. All samples were found to have the CaCu5-type structure, space group P6/mmm. The lattice parameters increase monotonically with increasing Cu concentration. The Curie temperature T-c has a maximum value of 29 K at x=1.0. The magnetic structure of TbNi5 at 10 K is incommensurate with a helimagnetic component [wave vector q similar to 2 pi/c(0,0,0.02)] perpendicular to a ferromagnetic one. In contrast, the substituted TbNi5-xCux alloy is ferromagnetic. All magnetic moments are observed to be located on the Tb atoms. The magnetocrystalline anisotropy in the ab plane is observed to be strongly increased by the Cu substitution, whereas the magnetization decreases with the Cu concentration. The observed magnetic structure of TbNi5 is consistent with first principles calculations regarding both the magnetic moments and the helimagnetic structure. The microscopical origin of the helimagnet is analyzed and correlated to the Fermi surface topology.

Place, publisher, year, edition, pages
2006. Vol. 74, no 9, 094419- p.
National Category
Inorganic Chemistry Condensed Matter Physics
Identifiers
URN: urn:nbn:se:uu:diva-82093DOI: 10.1103/PhysRevB.74.094419ISI: 000240871700046OAI: oai:DiVA.org:uu-82093DiVA: diva2:110008
Available from: 2006-09-18 Created: 2006-09-18 Last updated: 2017-12-14Bibliographically approved
In thesis
1. Magnetic and Structural Properties of f-electron Systems from First Principles Theory
Open this publication in new window or tab >>Magnetic and Structural Properties of f-electron Systems from First Principles Theory
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

A series of studies of f-electron systems based on density functional theory methods have been performed.  The focus of the studies has been on magnetic and structural properties, as well as investigating ways to handle strong electron correlation in these systems.

A version of the self-interaction correction (SIC) method has been developed for a full-potential linear muffin-tin orbital method. The method is demonstrated to have the strong capabilities of previous SIC implementations, to study energetics and phase stabilities of d- and f-electron systems with localisation-delocalisation transitions, but with no geometrical constraints from the underlying band structure method. The method is applied to the high-TC superconductor CeOFeAs, in which the f-shell of the Ce atoms is argued to undergo a Mott transition to a delocalised state under pressure.

The non-collinear magnetic structures of two rare earth compounds, TbNi5 and CeRhIn5 have been studied, and in both cases the complex magnetic ordering can be attributed to the effects of Fermi surface nesting.

The magnetic properties of the FeMnP0.75Si0.25 system has been studied and found to have an extreme sensitivity to the amount of disorder of the Fe-Mn sublattice.

Elements with valence f electrons typically exhibit very complex phase diagrams, with the frequently occurring phenomenon that they melt from a bcc phase that is unstable in calculations based solely on the electronic structure. The high temperature bcc phase of the elements La and Th were studied by means of the self-consistent ab initio lattice dynamics method that accounts for phonon-phonon interaction.

Delicate magnetic and structural properties are often sensible to details of how the Brillouin zone (BZ) integration is performed. An improved scheme is proposed that adapts to the BZ mesh and allows for better energy convergence of small energy differences in the smearing type methods.

Correlation effects in the 5f-states of plutonium has in recent years been the focus of attention for many theoretical studies employing extensions to DFT schemes. These different schemes have often produced large variations in 5f occupation numbers, and therefore a survey was made of experimental occupation numbers and 4f core level shifts to establish a value for the 5f occupation without any computational bias.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2009. 82 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 686
National Category
Physical Sciences
Research subject
Materials Science
Identifiers
urn:nbn:se:uu:diva-109639 (URN)978-91-554-7644-1 (ISBN)
Public defence
2009-12-04, A80101, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2009-11-13 Created: 2009-10-21 Last updated: 2011-01-11Bibliographically approved
2. A Theoretical Study of Magnetism in Nanostructured Materials
Open this publication in new window or tab >>A Theoretical Study of Magnetism in Nanostructured Materials
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

A first-principles linear scaling real-space method for investigating non-collinear magnetic behaviour of nanostructured materials has been developed. With this method, the magnetic structures of small supported transition metal clusters have been examined. The geometric constraints imposed on the clusters by the underlying surface is found to cause non-collinear behaviour for V, Cr, and Mn clusters on Cu(111). Fe clusters supported on Cu and Ni have been studied and both spin and orbital moments are found to be enhanced for the Fe atoms, which is attributed to the recuced symmetry present at the surface. Atoms in Co clusters have been found to order antiferromagnetically, and some times in a non-collinear fasion, when deposited on a W surface. Small clusters of fcc Fe embedded in Cu have been examined and a new type of ordering, not present in larger fcc Fe systems was found.

Several theoretical studies of Fe and Co based nanostructures consisting of multilayers or embedded clusters have been conducted, with the aim of predicting high moment materials for use in data storage applications. In agreement with previous experiments an enhancement of the magnetic moment is found compared to the magnetic moment of bcc Fe. The enhancement has been shown to be caused by increased spin moments for Fe atoms in close proximity with Co atoms, and this enhancement depends on the number of Co neighbours. As a result of these studies, a possible method of increasing the magnetic moment of cluster based materials has been proposed.

Fermi surface analysis have been performed both on bulk materials, in order to investigate mechanisms for stabilizing non-collinear magnetic states, and in layered structures where the effect of the Fermi surface on the interlayer exchange coupling has been investigated.

In addition to the development of a real-space electronic structure method for non-collinear magnetism, a density matrix purification method has been implemented in the framework of linear muffin-tin orbitals.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2006. x + 78 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 167
Keyword
Physics, magnetism, clusters, non-collinear, multilayers, first-principles theory, electronic structure, high-moment materials, exchange interactions, linear scaling methods, Fysik
National Category
Physical Sciences
Identifiers
urn:nbn:se:uu:diva-6763 (URN)91-554-6527-7 (ISBN)
Public defence
2006-05-05, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2006-04-12 Created: 2006-04-12 Last updated: 2012-03-27Bibliographically approved
3. Non-collinear Magnetism in d- and f-electron Systems
Open this publication in new window or tab >>Non-collinear Magnetism in d- and f-electron Systems
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, non-collinear magnetism has been studied by using density functional theory and the augmented plane wave method with local orbitals (APW+lo). Two conditions for non-collinear instabilities have been identified in this thesis. First, the Fermi energy should cut through both spin up and down states. Secondly, strong nesting between the spin up and spin down Fermi surfaces is needed. The two criteria described here can be fulfilled by tuning the exchange-splitting and/or by modifying the volume. Calculations on several elements; bcc V, bcc and fcc Mn, bcc Fe, bcc and fcc Co, and bcc and fcc Ni show that a non-collinear state can be stabilized provided that the criteria discussed above are met. More complex materials have also been analyzed in terms of these two criteria. The substitutional alloys TlCo2Se2-xSx are found in experiments to possess spin spiral structures for x = {0-1.5} and at a concentration x = 1.75 the alloys become ferromagnetic. As S takes the place of Se in the crystal structure the distance between the Co layers is reduced and the turn angle of the spin spiral becomes smaller until it totally vanishes at x = 1.75. This thesis show that the evolution of the magnetic structure in these alloys is the consequence of a modification of the distance between Co layers, which induces a change in the interlayer exchange coupling.

Fermi surfaces have been analyzed in TbNi5 in order to determine nesting features which would be responsible for the magnetic spin spiral observed in this material. The electronic structure of CeRhIn5 is also reported in this thesis. Furthermore, the 3-k magnetic structure of UO2 was investigated and the crystal field levels were calculated. Transition metal systems such as Fe in the superconducting high-pressure hcp phase and in the fcc crystal structure were also studied. The results obtained for fcc Fe are in accordance with previous reports. However the paramagnetic state in hcp Fe is found to be more stable than the antiferromagnetic configurations discussed earlier in the literature as being favored in the volume range where the hcp phase is stable and superconductivity appears (~ 15 GPa). The complex non-collinear magnetic structure in Mn3IrSi was calculated and the results are found to be in good agreement with experiments.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2006. vii + 54 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 169
Keyword
Physics, Non-collinear magnetism, spin spirals, first principles, density functional theory, Fermi surfaces, electronic structure, f-electron systems, Fysik
National Category
Physical Sciences
Identifiers
urn:nbn:se:uu:diva-6812 (URN)91-554-6540-4 (ISBN)
Public defence
2006-05-12, Siegbahnsalen, Ångström Laboratory, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2006-04-21 Created: 2006-04-21 Last updated: 2012-03-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Bergman, AndersBjörkman, TorbjörnAndersson, YvonneGustafsson, TorbjörnNordström, LarsEriksson, Olle

Search in DiVA

By author/editor
Bergman, AndersBjörkman, TorbjörnAndersson, YvonneGustafsson, TorbjörnNordström, LarsEriksson, Olle
By organisation
Department of PhysicsDepartment of Materials ChemistryInorganic ChemistryStructural Chemistry
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Inorganic ChemistryCondensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1019 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf