uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mechanical behaviour of ideal elastic-plastic particles subjected to different triaxial loading conditions
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
2017 (English)In: Powder Technology, ISSN 0032-5910, E-ISSN 1873-328X, Vol. 315, 347-355 p.Article in journal (Refereed) Published
Abstract [en]

The contact force development for two types of polymeric elastoplastic particles subjected to different triaxial loading conditions was studied experimentally utilising a unique triaxial testing apparatus. In order to evaluate the experimental results, a finite element analysis was performed. The experimental findings highlighted the importance of contact dependence, which manifested itself in two principally different ways. Firstly, a reduced stiffness was observed when plastic deformation ceased to be fully contained, which, depending on the loading conditions, occurred at an engineering strain of about 5-10%. Secondly, a markedly increased stiffness was observed when particle confinement inhibited further plastic deformation, making elastic volume reduction the predominant deformation mode. The experimental results could be well reproduced by the numerical simulations, provided that isotropic hardening was included in the elastoplastic model. In an attempt to invariantly describe the data, a nominal contact pressure was determined as a function of the volumetric constraint of the particle. This resulted in an adequate collapse of results obtained for different loading conditions onto a single master curve at large volumetric constraint. In summary, this paper should be considered as a step along the pathway towards our long term goal of introducing novel and improved contact models.

Place, publisher, year, edition, pages
2017. Vol. 315, 347-355 p.
Keyword [en]
Particle mechanics, Triaxial, Compression, Spatial confinement, Contact dependence
National Category
Applied Mechanics
Identifiers
URN: urn:nbn:se:uu:diva-323755DOI: 10.1016/j.powtec.2017.04.005ISI: 000401593600041OAI: oai:DiVA.org:uu-323755DiVA: diva2:1108797
Funder
Swedish Research Council, 621-2011-4049
Available from: 2017-06-13 Created: 2017-06-13 Last updated: 2017-06-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Jonsson, HenrikGråsjö, JohanFrenning, Göran

Search in DiVA

By author/editor
Jonsson, HenrikGråsjö, JohanFrenning, Göran
By organisation
Department of Pharmacy
In the same journal
Powder Technology
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 124 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf