uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Production of Sn and Sb isotopes in high-energy neutron induced fission of natU
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.ORCID iD: 0000-0002-1990-5083
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.ORCID iD: 0000-0003-4725-3083
Show others and affiliations
2018 (English)In: European Physical Journal A, ISSN 1434-6001, E-ISSN 1434-601X, Vol. 54, article id 33Article in journal (Refereed) Published
Abstract [en]

The first systematic measurement of neutron-induced fission yields has been performed at the upgraded IGISOL-4 facility at the University of Jyvaskyla, Finland. The fission products from high-energy neutron-induced fission of U-nat were stopped in a gas cell filled with helium buffer gas, and were online separated with a dipole magnet. The isobars, with masses in the range A = 128-133, were transported to a tape-implantation station and identified using gamma-spectroscopy. We report here the relative cumulative isotopic yields of tin (Z = 50) and the relative independent isotopic yields of antimony (Z = 51). Isomeric yield ratios were also obtained for five nuclides. The yields of tin show a staggered behaviour around A = 131, not observed in the ENDF/B-VII. 1 evaluation. The yields of antimony also contradict the trend from the evaluation, but are in agreement with a calculation performed using the GEF model that shows the yield increasing with mass in the range A = 128-133.

Place, publisher, year, edition, pages
2018. Vol. 54, article id 33
National Category
Subatomic Physics
Identifiers
URN: urn:nbn:se:uu:diva-328572DOI: 10.1140/epja/i2018-12462-1ISI: 000428637900002OAI: oai:DiVA.org:uu-328572DiVA, id: diva2:1136264
Funder
EU, FP7, Seventh Framework Programme, 605203Swedish Radiation Safety AuthoritySwedish Nuclear Fuel and Waste Management Company, SKBAvailable from: 2017-08-26 Created: 2017-08-26 Last updated: 2018-06-04Bibliographically approved
In thesis
1. Studying neutron-induced fission at IGISOL-4: From neutron source to yield measurements and model comparisons
Open this publication in new window or tab >>Studying neutron-induced fission at IGISOL-4: From neutron source to yield measurements and model comparisons
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Fission yields represent the probability of producing a certain nuclide in a fission event, and are important observables for fission research. For applications, accurate knowledge of the yields is fundamental at all stages of the fuel cycle of nuclear reactors, e.g., for reactivity calculations, or to estimate (spent) fuel inventory. Fission yields also help in the basic understanding of the fission process, for nucleosynthesis models, and for radioactive ion beam production.

This thesis was developed in the framework of the AlFONS project, the objective of which was to measure neutron-induced fission yields of relevance for partitioning and transmutation of spent fuel. The work is performed at the IGISOL-4 facility in JYFL (University of Jyväskylä).

The first part of this thesis work is dedicated to the development and characterisation of a suitable 9Be(p(30MeV),nx) neutron source for IGISOL-4. The neutron energy spectrum and the neutron yield from a 5mm thick converter were studied with Monte Carlo simulations. Two characterisation campaigns that validated the MCNPX code were also performed. At the maximum current available from the cyclotron at JYFL, a total neutron yield between 2 and 5×1012 neutrons/(sr s) can be obtained. This satisfies the design goal for studies of fission yields.

The neutron source was used in the measurement of fission yields from high-energy neutron-induced fission of natU at IGISOL-4, discussed in the second part of this thesis. The fission products were online-separated with a dipole magnet. The isobars, with masses in the range A = 128-133, were identified using γ-spectroscopy. Data for the relative yields of tin and antimony, as well as isomeric yield ratios for five nuclides will be reported. The yields show trends not observed in the ENDF/B-VII.1 evaluation, and only in part confirmed by the GEF model.

The final part of this thesis concerns a study of the performance of different nuclear model codes, that aim at describing the states of the fission fragments right after scission. Reproduction of experimental data serves to benchmark the models and it indicates, to some extent, how reliably the results can be extrapolated to regions where no data exist.

A methodology to compare and test these models has been developed, which was implemented in the DEℓFIN code. DEℓFIN takes the excited fission fragments, defined by the model under test, and de-excites them in a standardised way using the nuclear model code TALYS. Eliminating any variability in the way the final observables are extracted helps focusing on each model's assumptions. DEℓFIN was tested on five models, and interesting features in the prompt neutron multiplicity were found for some of them. This study will promote a better understanding of the ideas used in the development of fission models.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. p. 109
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1550
National Category
Subatomic Physics
Identifiers
urn:nbn:se:uu:diva-328484 (URN)978-91-513-0052-8 (ISBN)
Public defence
2017-10-13, 4001, Ångström Laboratory, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2017-09-20 Created: 2017-08-28 Last updated: 2017-10-17

Open Access in DiVA

fulltext(347 kB)8 downloads
File information
File name FULLTEXT01.pdfFile size 347 kBChecksum SHA-512
c81ef23fb63fbdc6ac39df6dce31d730f75e5a240da0923ab6e448dbc4a8517ae9c5f67363b1cc027933cbc3752463b0ecc877a4130d83a7415300693fbcd273
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Mattera, AndreaPomp, StephanLantz, MattiasSolders, AndreasRakopoulos, VasileiosAl-Adili, Ali

Search in DiVA

By author/editor
Mattera, AndreaPomp, StephanLantz, MattiasSolders, AndreasRakopoulos, VasileiosAl-Adili, Ali
By organisation
Applied Nuclear Physics
In the same journal
European Physical Journal A
Subatomic Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 8 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 164 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf