uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluation of different intrinsic ZnO and transparent conducting oxide layer combinations in Cu(In,Ga)Se2 solar cells
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
2017 (English)In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 633, 235-238 p.Article in journal (Refereed) Published
Abstract [en]

We studied the interaction of four different window layer combinations in Cu(In,Ga)Se-2 solar cells. Intrinsic ZnO (i-ZnO) layers were grown on CdS by either chemical vapor deposition (CVD) or magnetron sputtering. These were combined with sputtered ZnO:Al or In2O3:H grown by atomic layer deposition as transparent conducting oxides (TCO). It was found that the thickness of the CVD i-ZnO layer affects the open circuit voltage (V-oc) significantly when using In2O3:H as TCO. The V-oc dropped by roughly 30 mV when the i-ZnO thickness was increased from 20 to 160 nm. This detrimental effect on V-oc was not as prominent when a ZnO:Al TCO was used, where the corresponding decrease was in the range of 5 to 10 my. In addition, the V-oc drop for the CVD i-ZnO/In2O3:H structure was not observed when using the sputtered i-ZnO layer. Furthermore, large fill factor variations were observed when using the In2O3:H TCO without an i-ZnO layer underneath, where already a thin (20 nm) CVD i-ZnO layer mitigated this effect. Device simulations were applied to explain the experimentally observed Voc trends.

Place, publisher, year, edition, pages
2017. Vol. 633, 235-238 p.
Keyword [en]
Copper indium gallium selenide, Transparent conducting oxide, Atomic layer deposition, Zinc oxide, Indium oxide
National Category
Physical Sciences Materials Engineering
Identifiers
URN: urn:nbn:se:uu:diva-330020DOI: 10.1016/j.tsf.2016.09.015ISI: 000404802300045OAI: oai:DiVA.org:uu-330020DiVA: diva2:1148325
Conference
Symposium V on Thin Film Chalcogenide Photovoltaic Materials held at the 13th E-MRS Spring Meeting, MAY 02-06, 2016, Lille, FRANCE
Funder
Swedish Energy Agency, 2012-004591
Note

Evaluation of different intrinsic ZnO and transparent conducting oxide layer combinations in Cu(In,Ga)Se-2 solar cells

Available from: 2017-10-10 Created: 2017-10-10 Last updated: 2017-10-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Larsson, FredrikKeller, JanEdoff, MarikaTörndahl, Tobias
By organisation
Solid State Electronics
In the same journal
Thin Solid Films
Physical SciencesMaterials Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 48 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf