uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Different Shades of Li4Ti5O12 Composites: The Impact of the Binder on Interface Layer Formation
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
Show others and affiliations
2017 (English)In: ChemElectroChem, 10.1002/celc.201700395- p.Article in journal (Refereed) Published
Abstract [en]

Replacing the traditional PVdF(-HFP) electrode binder by water-soluble alternatives can potentially render electrode fabrication more environmentally benign. Herein, the surface layer formation of stored and cycled samples of two water-based Li4Ti5O12 composites employing either poly(sodium acrylate) (PAA-Na) or sodium carboxymethyl cellulose (CMC-Na) as binders are studied by X-ray photoelectron spectroscopy. In all three formulations, the surface layer composition formed upon storage differed notably from the solid-electrolyte interphase (SEI) layer formed on cycled samples. The surface layer under open-circuit conditions seems to originate mostly from the electrolyte salt (LiPF6) degradation. The comparison with cycled samples after 10 and 100 cycles shows a continuous build-up of an SEI layer on PAA-Na and PVdF-HFP electrodes. In contrast, on CMC-Na containing electrodes the SEI composition remains nearly unchanged. The results correlate well with the electrochemical behavior.

Place, publisher, year, edition, pages
2017. 10.1002/celc.201700395- p.
National Category
Materials Chemistry
Research subject
Chemistry with specialization in Materials Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-331111DOI: doi.wiley.com/10.1002/celc.201700395OAI: oai:DiVA.org:uu-331111DiVA: diva2:1148396
Available from: 2017-10-10 Created: 2017-10-10 Last updated: 2017-10-13
In thesis
1.
The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Nordh, TimYounesi, RezaEdström, KristinaBrandell, Daniel
By organisation
Structural Chemistry
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 58 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf