uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Manganese in the SEI Layer of Li 4Ti5O12 Studied by Combined NEXAFS and HAXPES Techniques
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
Show others and affiliations
2016 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 120, no 6, 3206-3213 p.Article in journal (Refereed) Published
Abstract [en]

A combination of hard X-ray photoelectron spectroscopy (HAXPES) and near edge X-ray absorption fine structure (NEXAFS) are here used to investigate the presence and chemical state of crossover manganese deposited on Li-ion battery anodes. The synchrotron- based experimental techniques?using HAXPES and NEXAFS analysis on the same sample in one analysis chamber?enabled us to acquire complementary sets of information. The Mn crossover and its influence on the anode interfacial chemistry has been a topic of controversy in the literature. Cells comprising lithium manganese oxide (LiMn2O4, LMO) cathodes and lithium titanate (Li4Ti5O12, LTO) anodes were investigated using LP40 (1MLiPF6, EC:DEC 1:1) electrolyte. LTO electrodes at lithiated, delithiated, and open circuit voltage (OCV-stored) states were analyzed to investigate the potential dependency of the manganese oxidation state. It was primarily found that a solid surface layer was formed on the LTO electrode and that this layer contains deposited Mn from the cathode. The results revealed that manganese is present in the ionic state, independent of the lithiation of the LTO electrode. The chemical environment of the deposited manganese could not be assigned to simple compounds such as fluorides or oxides, indicating that the state of manganese is in a more complex form.

Place, publisher, year, edition, pages
2016. Vol. 120, no 6, 3206-3213 p.
National Category
Materials Chemistry
Research subject
Chemistry with specialization in Materials Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-331109DOI: 10.1021/acs.jpcc.5b11756OAI: oai:DiVA.org:uu-331109DiVA: diva2:1148398
Available from: 2017-10-10 Created: 2017-10-10 Last updated: 2017-10-10

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Nordh, TimYounesi, RezaBrandell, DanielEdström, Kristina
By organisation
Structural Chemistry
In the same journal
The Journal of Physical Chemistry C
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 36 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf