uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cyclopropyl Group: An Excited-State Aromaticity Indicator?
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics. (Henrik Ottosson)ORCID iD: 0000-0003-2128-6733
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics. uppsala university. (Henrik Ottosson)
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
Show others and affiliations
2017 (English)In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 23, no 55, p. 13684-13695Article in journal (Refereed) Published
Abstract [en]

The cyclopropyl (cPr) group, which is a well-known probe for detecting radical character at atoms to which it is connected, is tested as an indicator for aromaticity in the first * triplet and singlet excited states (T-1 and S-1). Baird's rule says that the -electron counts for aromaticity and antiaromaticity in the T-1 and S-1 states are opposite to Huckel's rule in the ground state (S-0). Our hypothesis is that the cPr group, as a result of Baird's rule, will remain closed when attached to an excited-state aromatic ring, enabling it to be used as an indicator to distinguish excited-state aromatic rings from excited-state antiaromatic and nonaromatic rings. Quantum chemical calculations and photoreactivity experiments support our hypothesis; calculated aromaticity indices reveal that openings of cPr substituents on [4n]annulenes ruin the excited-state aromaticity in energetically unfavorable processes. Yet, polycyclic compounds influenced by excited-state aromaticity (e.g., biphenylene), as well as 4n-electron heterocycles with two or more heteroatoms represent limitations.

Place, publisher, year, edition, pages
2017. Vol. 23, no 55, p. 13684-13695
National Category
Organic Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-332141DOI: 10.1002/chem.201701404ISI: 000412193700021PubMedID: 28683165OAI: oai:DiVA.org:uu-332141DiVA, id: diva2:1152387
Funder
Wenner-Gren FoundationsSwedish Research Council, 2015-04538
Available from: 2017-10-24 Created: 2017-10-24 Last updated: 2018-04-23Bibliographically approved
In thesis
1. Influence of Aromaticity on Excited State Structure, Reactivity and Properties
Open this publication in new window or tab >>Influence of Aromaticity on Excited State Structure, Reactivity and Properties
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis describes work that could help development of new photochemical reactions and light-absorbing materials. Focus is on the chemical concept "aromaticity" which is a proven conceptual tool in developing thermal chemical reactions. It is here shown that aromaticity is also valuable for photochemistry. The influence of aromaticity is discussed in terms of structure, reactivity and properties. With regard to structure, it is found that photoexcited molecules change their structure to attain aromatic stabilization (planarize, allow through-space conjugation) or avoid antiaromatic destabilization (pucker). As for reactivity, it is found that stabilization/destabilization of reactants decrease/increase photoreactivity, in accordance with the Bell-Evans-Polanyi relationship. Two photoreactions based on excited state antiaromatic destabilization of the substrates are reported. Finally, with respect to properties, it is shown that excited state energies can be tuned by considering aromatic effects of both the electronic ground state and the electronically excited states. The fundamental research presented in this thesis forms a foundation for the development of new photochemical reactions and design of compounds for new organic electronic materials.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2018. p. 55
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1679
Keyword
photochemistry, aromaticity, computational chemistry
National Category
Organic Chemistry Theoretical Chemistry
Research subject
Chemistry with specialization in Organic Chemistry
Identifiers
urn:nbn:se:uu:diva-349229 (URN)978-91-513-0354-3 (ISBN)
Public defence
2018-06-14, room 80101, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2018-05-22 Created: 2018-04-23 Last updated: 2018-05-22

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Ayub, RabiaJorner, KjellZietz, BurkhardOttosson, Henrik

Search in DiVA

By author/editor
Ayub, RabiaJorner, KjellZietz, BurkhardOttosson, Henrik
By organisation
Department of Chemistry - BMCMolecular BiomimeticsPhysical Chemistry
In the same journal
Chemistry - A European Journal
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 119 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf