uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Studies of a Next Generation Silicon-Photomultiplier-Based Time-of-Flight PET/CT System
Stanford Univ, Radiol, Elect Engn, Stanford, CA 94305 USA..
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
GE Healthcare, Waukesha, WI USA..
GE Healthcare, Waukesha, WI USA..
Show others and affiliations
2017 (English)In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 58, no S1, article id 89Article in journal, Meeting abstract (Other academic) Published
Abstract [en]

Objectives: This article presents studies performed with the Discovery MI PET/CT system, a new time-of-flight (TOF) system based on silicon photomultipliers. System performance was characterized according to the NEMA NU-2 2012 standards. Comparisons of performance and clinical images were also made between this next-generation system and other commercially available PET/CT and PET/MR systems, as well as between different image reconstruction algorithms.

Methods: Spatial resolution, sensitivity, NECR, scatter fraction, count rate accuracy, and image quality were characterized according to the NEMA NU-2 2012 standards. In addition, energy and coincidence time resolution were measured using a line source at the center of the field-of-view (CFOV). Tests were conducted independently on two Discovery MI scanners installed at Stanford University Hospital and Uppsala University Hospital, and results were averaged between the two systems. In addition, back-to-back patient scans were performed between the Discovery MI PET/CT, Discovery 690 PET/CT, and SIGNA PET/MR systems. Clinical images were reconstructed with both ordered-subset expectation maximization (OSEM) reconstruction algorithms and the block-sequential regularized expectation maximization (BSREM) "Q.Clear" reconstruction algorithm, and examined qualitatively.

Results: The averaged FWHM of the radial, tangential, and axial spatial resolution reconstructed with filtered backprojection (FBP) at 1/10/20 cm from the system center are, respectively, 4.10/4.19/4.48 mm, 5.47/4.49/6.01 mm, and 7.53/4.90/6.10 mm. The averaged sensitivity is 13.7 cps/kBq at the center and 13.4 cps/kBq at 10 cm radial offset from the center. Averaged peak noise equivalent count rate (NECR) is 193.4 kcps at 21.9 kBq/mL with a scatter fraction (SF) of 40.6%. The averaged contrast recovery (CR) coefficients for the image quality (IQ) phantom are 53.7/64.0/73.1/82.7/86.8/90.7 for the 10/13/17/22/28/37 mm diameter spheres over 3 separate acquisitions. The average photopeak energy resolution is 9.40% FWHM and the average coincidence time resolution is 375.4 ps FWHM. Clinical image comparisons between the PET/CT systems demonstrate the very high quality of the Discovery MI system. Comparisons between the Discovery MI PET/CT and SIGNA PET/MR systems, which contain identical detector architectures but with different detector diameters, show similar spatial resolution and overall imaging performance. Lastly, results indicate significant image quality and contrast-to-noise performance enhancement for the "Q.Clear" reconstruction algorithm when compared to OSEM.

Conclusion: Excellent performance was achieved with the new Discovery MI system, including 375 ps FWHM coincidence time resolution and sensitivity of 14 cps/kBq. Comparisons between different image reconstruction algorithms and other multimodal SiPM and non-SiPM-based PET detector system designs indicate substantial performance enhancements are possible with this next-generation system. Research Support: None

Place, publisher, year, edition, pages
2017. Vol. 58, no S1, article id 89
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
URN: urn:nbn:se:uu:diva-333333ISI: 000404949900089OAI: oai:DiVA.org:uu-333333DiVA, id: diva2:1157085
Conference
Annual Meeting of the Society-of-Nuclear-Medicine-and-Molecular-Imaging (SNMMI), JUN 10-14, 2017, Denver, CO
Available from: 2017-11-15 Created: 2017-11-15 Last updated: 2017-11-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

http://jnm.snmjournals.org/content/58/supplement_1/89.abstract?sid=3f50a75c-03e4-40e3-98d9-6c7a81f96870

Authority records BETA

Ilan, EzgiLubberink, Mark

Search in DiVA

By author/editor
Ilan, EzgiLubberink, Mark
By organisation
Radiology
In the same journal
Journal of Nuclear Medicine
Radiology, Nuclear Medicine and Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 68 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf