uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Active Current Sharing Control Method for Rotating Thyristor Rectifiers on Brushless Dual-Star Exciters
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.ORCID iD: 0000-0002-3656-1032
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.ORCID iD: 0000-0001-8237-3107
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
2018 (English)In: IEEE transactions on energy conversion, ISSN 0885-8969, E-ISSN 1558-0059, Vol. 33, no 2, p. 893-896Article in journal (Refereed) Published
Abstract [en]

A new high-speed-response dual-star brushless rotating exciter has been recently proposed, which utilizes two rotating thyristor rectifiers in a hybrid-mode topology. However, dissymmetries tend to occur in large-scale apparatus, which ultimately results in an undesired unbalanced loading of the topology. Moreover, the topology provides a possibility for compensation via asymmetrical firing, which serves as a promising solution to be investigated. This letter proposes an active current sharing adjustment method between the parallel thyristor bridges. The method improves controllability and performance compared with the alternative “skip firing” approach, and it can replace the interphase reactors (IPRs) in large direct current applications.

Place, publisher, year, edition, pages
2018. Vol. 33, no 2, p. 893-896
Keywords [en]
AC generator excitation, asymmetrical firing, hybrid-mode 12-pulse thyristor rectifier, brushless exciters
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
URN: urn:nbn:se:uu:diva-333568DOI: 10.1109/TEC.2018.2813664ISI: 000432993800044OAI: oai:DiVA.org:uu-333568DiVA, id: diva2:1157157
Available from: 2017-11-15 Created: 2017-11-15 Last updated: 2018-08-20Bibliographically approved
In thesis
1. Improving the functionality of synchronous machines using power electronics
Open this publication in new window or tab >>Improving the functionality of synchronous machines using power electronics
2017 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

With the advent of modern power electronics there is reason to explore what can be achieved when it is applied to a mature technology like synchronous machines. In this text several concepts will be presented on how it is possible to control forces and how to get better performance out of synchronous machines by using power electronics. Methodologies to create radial forces by controlling the field current in a standard series connected rotor winding as well as when the winding is split in to several segments is presented. By segmenting the rotor a resulting force vector can be created to cancel forces due to unbalanced magnetic pull.

It is also shown that inverting the field current with respect to the stator field enables line start of synchronous machines without using damper bars, frequency converters, or starting motors.

Some first results from the installation and testing of an electromagnetic thrust bearing installed in unit U9 in the hydropower station in Porjus are presented. The benefits of the system is increased reliability and higher efficiency of the thrust bearing system.

An evaluation of a 2-stage brushless excitation system was done, different rotating power electronics topologies were tested in the stationary frame connected to a six-phase permanent magnet brushless exciter. The rotating control and measurement system for the power electronics is presented. Potential benefits of the system is that there is no need for brushes to transfer the field current to the rotor winding, fast response time due to actively controlled electronics, independence of the station bus voltage, and reduced maintenance.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017
Series
UURIE / Uppsala University, Department of Engineering Sciences, ISSN 0349-8352 ; 352-17L
Keywords
Power electronics, Synchronous machines, Excitation systems, Magnetic thrust bearing, Starting synchronous machines, Split rotor, Rotating electronics, Magnetic fields, Measurement systems, Unbalanced magnetic pull, Harmonics
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
urn:nbn:se:uu:diva-333940 (URN)
Presentation
2017-12-18, Häggsalen (Å10132), Ångströmslaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2018-01-08 Created: 2017-11-20 Last updated: 2018-01-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Nøland, Jonas KristiansenEvestedt, FredrikLundin, Urban

Search in DiVA

By author/editor
Nøland, Jonas KristiansenEvestedt, FredrikLundin, Urban
By organisation
Electricity
In the same journal
IEEE transactions on energy conversion
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf