uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Measurements ofinflammation protein biomarkers in venous plasma, earlobe capillary plasma andin capillary plasma stored on filter paper
a. Department of Anthropology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; b. Department of Behavioural Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools.
Show others and affiliations
2017 (English)In: Cytokine, ISSN 1043-4666, E-ISSN 1096-0023Article in journal (Other academic) Submitted
Abstract [en]

Multiplex panels for protein biomarkers are increasingly used to analyze blood samples in various fields of clinical research. However, they are rarely used in studies performed outside of a clinical setting. This may in part be due to the relative invasiveness of drawing blood from the vein and because of problems associated with the separation and transport of plasma. Samples collected from the earlobe would be less invasive and could be collected more conveniently. Transportation and storage of such samples could be made easier by blotting plasma on filter paper as dried plasma spots (DPS). The objective of this study was to compare values of multiple protein biomarkers for inflammation measured from three different sources (1) venous plasma, (2) plasma derived from capillary blood from the earlobe and (3) from capillary plasma stored as DPS. Samples from twelve male individuals were assessed with a panel of 92 inflammation related proteins using multiplex proximity extension assay technology. Correlations between the three sample types varied greatly between analytes. In general, a high correlation was observed between capillary plasma and DPS, with 33 analytes showing a correlation value of ρ > 0.8 in the two sample types. At this level of correlation (ρ > 0.8) 14 analytes correlated between venous and capillary plasma in contrast to only six analytes in the comparison of venous blood with DPS. We conclude that collecting samples from the earlobe is a feasible and less invasive alternative to venipuncture, but that the comparability with measures obtained from venous samples varies greatly between proteins.

Place, publisher, year, edition, pages
2017.
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
URN: urn:nbn:se:uu:diva-334534OAI: oai:DiVA.org:uu-334534DiVA: diva2:1159779
Available from: 2017-11-23 Created: 2017-11-23 Last updated: 2017-11-24
In thesis
1. Development and Application of Proximity Assays for Proteome Analysis in Medicine
Open this publication in new window or tab >>Development and Application of Proximity Assays for Proteome Analysis in Medicine
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Along with proteins, a myriad of different molecular biomarkers, such as post-translational modifications and autoantibodies, could be used in an attempt to improve disease detection and progression. In this thesis, I build on several iterations of the proximity ligation assay to develop and apply new adaptable methods to facilitate detection of proteins, autoantibodies and post-translational modifications.

In paper I, we present an adaptation of the solid-phase proximity ligation assay (SP-PLA) for the detection of post-translational modification of proteins (PTMs). The assay was adapted for the detection of two of the most commons PTMs present in proteins, glycosylation and phosphorylation, offering the encouraging prospect of using detection of PTMs in a diagnostic or prognostic capacity. 

In paper II, we developed a variant of the proximity ligation assay using micro titer plate for detection and quantification of protein using optical density as readout in the fluorometer, termed PLARCA. With a detection limit considerably lower than ELISA, PLARCA detected femtomolar levels of these proteins in patient samples.

In paper III, we aim to compare detection values of samples collected from earlobe capillary, venous plasma, as well as capillary plasma stored in dried plasma spots (DPS) assessed with a 92-plex inflammation panel using multiplex proximity extension assay (PEA). Despite the high variability in protein measurements between the three sample sources, we were able to conclude that earlobe capillary sampling is a suitable less invasive alternative, to venipuncture.

In paper IV, we describe the application of PLARCA and proximity extension assay (PEA) for the detection of GAD65 autoantibodies (GADA). Thus, offering highly sensitive and specific autoimmunity detection.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2018. 60 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1400
Keyword
Solid-phase proximity ligation assay, post-translational modifications, glycosylation, phosphorylation, Enzyme-linked immunosorbent assay, immunoassay and rolling circle amplification, Proximity Extension Assay; inflammation protein biomarkers, autoantibodies; autoimmune disease
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
urn:nbn:se:uu:diva-334536 (URN)978-91-513-0164-8 (ISBN)
Public defence
2018-01-18, B:41, BMC, Husargatan 3, Uppsala, 09:00 (English)
Opponent
Supervisors
Available from: 2017-12-15 Created: 2017-11-23 Last updated: 2017-12-15

Open Access in DiVA

No full text

Search in DiVA

By author/editor
de Oliveira, Felipe
By organisation
Molecular tools
In the same journal
Cytokine
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 72 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf