uu.seUppsala University Publications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt146",{id:"formSmash:upper:j_idt146",widgetVar:"widget_formSmash_upper_j_idt146",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt147_j_idt149",{id:"formSmash:upper:j_idt147:j_idt149",widgetVar:"widget_formSmash_upper_j_idt147_j_idt149",target:"formSmash:upper:j_idt147:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Exploring Approximations for Floating-Point Arithmetic using UppSATPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
(English)Manuscript (preprint) (Other academic)
##### Abstract [en]

##### Keywords [en]

SAT, SMT, approximations, model construction, floating-point arithmetic
##### National Category

Computer Sciences
##### Research subject

Computer Science
##### Identifiers

URN: urn:nbn:se:uu:diva-334564OAI: oai:DiVA.org:uu-334564DiVA, id: diva2:1159879
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt450",{id:"formSmash:j_idt450",widgetVar:"widget_formSmash_j_idt450",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt456",{id:"formSmash:j_idt456",widgetVar:"widget_formSmash_j_idt456",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt462",{id:"formSmash:j_idt462",widgetVar:"widget_formSmash_j_idt462",multiple:true}); Available from: 2017-11-24 Created: 2017-11-24 Last updated: 2018-01-13
##### In thesis

We consider the problem of solving floating-point constraints obtained from software verification. We present UppSAT --- a new implementation of a systematic approximation refinement framework [ZWR17] as an abstract SMT solver. Provided with an approximation and a decision procedure (implemented in an off-the-shelf SMT solver), UppSAT yields an approximating SMT solver. Additionally, UppSAT includes a library of predefined approximation components which can be combined and extended to define new encodings, orderings and solving strategies. We propose that UppSAT can be used as a sandbox for easy and flexible exploration of new approximations. To substantiate this, we explore several approximations of floating-point arithmetic. Approximations can be viewed as a composition of an encoding into a target theory, a precision ordering, and a number of strategies for model reconstruction and precision (or approximation) refinement. We present encodings of floating-point arithmetic into reduced precision floating-point arithmetic, real-arithmetic, and fixed-point arithmetic (encoded into the theory of bit-vectors in practice). In an experimental evaluation, we compare the advantages and disadvantages of approximating solvers obtained by combining various encodings and decision procedures (based on existing, state-of-the-art SMT solvers for floating-point, real, and bit-vector arithmetic).

1. From Machine Arithmetic to Approximations and back again: Improved SMT Methods for Numeric Data Types$(function(){PrimeFaces.cw("OverlayPanel","overlay1159882",{id:"formSmash:j_idt751:0:j_idt755",widgetVar:"overlay1159882",target:"formSmash:j_idt751:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1191",{id:"formSmash:j_idt1191",widgetVar:"widget_formSmash_j_idt1191",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1244",{id:"formSmash:lower:j_idt1244",widgetVar:"widget_formSmash_lower_j_idt1244",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1245_j_idt1247",{id:"formSmash:lower:j_idt1245:j_idt1247",widgetVar:"widget_formSmash_lower_j_idt1245_j_idt1247",target:"formSmash:lower:j_idt1245:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});