uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A pneumatically assisted nanospray desorption electrospray ionization source for increased solvent versatility and enhanced metabolite detection from tissue
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
2017 (English)In: The Analyst, ISSN 0003-2654, E-ISSN 1364-5528, Vol. 142, no 18, 3424-3431 p.Article in journal (Refereed) Published
Abstract [en]

Nanospray desorption electrospray ionization (nano-DESI) has been established as a powerful technique for mass spectrometry imaging (MSI) of biomolecules from tissue samples. The direct liquid extraction of analytes from a surface at ambient pressure negates the need for significant sample preparation or matrix application. Although many recent studies have applied nano-DESI to new and exciting applications, there has not been much work in the development and improvement of the nano-DESI source. Here, we incorporate a nebulizer to replace the self-aspirating secondary capillary in the conventional nano-DESI setup, and characterize the device by use of rat kidney tissue sections. We find that the pneumatically assisted nano-DESI device offers improved sensitivity for metabolite species by 1-3 orders of magnitude through more complete desolvation and reduced ionization suppression. Further, the pneumatically assisted nano-DESI device reduces the dependence on probe-to-surface distance and enables sampling and imaging using pure water as the nano-DESI solvent. This provides exclusive detection and imaging of many highly polar endogenous species. Overall, the developed pneumatically assisted nano-DESI device provides more versatile solvent selection and an increased sensitivity for metabolites, which generates ion images of higher contrast - allowing for more intricate studies of metabolite distribution.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY , 2017. Vol. 142, no 18, 3424-3431 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-334756DOI: 10.1039/c7an00901aISI: 000409919200016PubMedID: 28828451OAI: oai:DiVA.org:uu-334756DiVA: diva2:1160555
Funder
Swedish Foundation for Strategic Research , SSF ICA-6Swedish Research Council, VR 621-2013-4231
Available from: 2017-11-27 Created: 2017-11-27 Last updated: 2017-11-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Duncan, Kyle D.Bergman, Hilde-MarleneLanekoff, Ingela

Search in DiVA

By author/editor
Duncan, Kyle D.Bergman, Hilde-MarleneLanekoff, Ingela
By organisation
Analytical Chemistry
In the same journal
The Analyst
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf