uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cyclic Changes of Pulmonary Vascular Mechanics During mechanical ventilation in acute respiratory distress syndrome. A porcine experimental model.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Objective: To test the hypothesis that acute respiratory syndrome (ARDS) worsens pulmonary vascular mechanics during the respiratory cycle under mechanical ventilation in an animal model.  

Design: Experimental study.

Setting: Animal research laboratory.

Subjects: 6 pigs, 31.7 ± 5.4 kg.

Interventions: ARDS was induced by combining saline lung-lavages with injurious mechanical ventilation. Pressure and flow sensors were placed at the main pulmonary artery (PA) and signals were collected simultaneously with airway pressure and flow. Pulmonary vascular mechanics and cardiac function parameters were calculates beat by beat during 2-3 minutes. We designed a novel method to quantify how the calculated variables behave during the whole respiratory cycle, i.e., during expiration and during inspiration. Results are expressed as the mean value during the corresponding phase of the respiratory cycle.

Measurements and Main Results: During the whole respiratory cycle and at expiration ARDS decreased SV and arterial compliance while increased mean and pulse PA pressure, effective arterial elastance and Dp/Dtmax when compared to baseline. At baseline and after ARDS, inspiration in positive pressure ventilation caused a decrease in stroke volume (-3±1ml, p<0.001 and -3±1ml, p<0.001), pulmonary mean (-0.5±0.3, p=0.007 and -0.7±0.3mmHg, p=0.002) and pulse pressure (-0.8±0.4, p=0.003 and -1,5±0.7mmHg, p=0.003) and compliance (-0.07±0.04 and -0.04±0.00ml/mmHg, p<0.001) and an increase in resistance (34±13, p=0.001 and 50±32dyn.s.cm-5, p=0.012) and in effective arterial elastance (0.04±0.01, p=0.001 and 0.08±0.04mmHg/ml, p=0.003). ARDS produced a more pronounced inspiratory increase in effective arterial elastance (p=0.041) when compared to baseline. Positive pressure ventilation caused a decrease in Dp/Dtmax at baseline (-15±9mmHg/s, p=0.010) but this was not significant during ARDS (-27±28mmHg/s, p=0.068).  

Conclusions: We found in this experimental model that MV induced tidal increase in arterial load and that this effect was higher during ARDS. This finding if transferred to patients, might partly explain the high rate of right heart failure clinically in ARDS.

National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-337405OAI: oai:DiVA.org:uu-337405DiVA: diva2:1169365
Available from: 2017-12-25 Created: 2017-12-25 Last updated: 2018-01-12
In thesis
1.
The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.

Open Access in DiVA

No full text

Authority records BETA

Santos, Arnoldo

Search in DiVA

By author/editor
Santos, Arnoldo
By organisation
Hedenstierna laboratoryClinical Physiology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 10 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf