uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the P2-NaxCo1−y(Mn2/3Ni1/3)yO2 Cathode Materials for Sodium-Ion Batteries: Synthesis, Electrochemical Performance, and Redox Processes Occurring during the Electrochemical Cycling
LCME, University Cadi Ayyad, Marrakech, Morocco.
Argonne Naional Laboratory.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.ORCID iD: 0000-0001-5861-4281
LCME, University Cadi Ayyad, Marrakech, Morocco.
Show others and affiliations
2018 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 1, p. 488-501Article in journal (Refereed) Published
Abstract [en]

P2-type NaMO2sodiated layered oxides withmixed transition metals are receiving considerable attention foruse as cathodes in sodium-ion batteries. A study on solidsolution (1−y)P2-NaxCoO2−(y)P2-NaxMn2/3Ni1/3O2(y=0,1/3, 1/2, 2/3, 1) reveals that changing the composition of thetransition metals affects the resulting structure and the stabilityof pure P2 phases at various temperatures of calcination. For 0≤y≤1.0, the P2-NaxCo(1−y)Mn2y/3Niy/3O2solid-solutioncompounds deliver good electrochemical performance whencycled between 2.0 and 4.2 V versus Na+/Na with improved capacity stability in long-term cycling, especially for electrodematerials with lower Co content (y= 1/2 and 2/3), despite lower discharge capacities being observed. The (1/2)P2-NaxCoO2−(1/2)P2-NaxMn2/3Ni1/3O2composition delivers a discharge capacity of 101.04 mAh g−1with a capacity loss of only 3% after 100cycles and a Coulombic efficiency exceeding 99.2%. Cycling this material to a higher cutoffvoltage of 4.5 V versus Na+/Naincreases the specific discharge capacity to≈140 mAh g−1due to the appearance of a well-defined high-voltage plateau, but afteronly 20 cycles, capacity retention declines to 88% and Coulombic efficiency drops to around 97%. In situ X-ray absorption near-edge structure measurements conducted on composition NaxCo1/2Mn1/3Ni1/6O2(y= 1/2) in the two potential windows studiedhelp elucidate the operating potential of each transition metal redox couple. It also reveals that at the high-voltage plateau, all ofthe transition metals are stable, raising the suspicion of possible contribution of oxygen ions in the high-voltage plateau.

Place, publisher, year, edition, pages
2018. Vol. 10, no 1, p. 488-501
Keywords [en]
Na-ion batteries, P2-type materials, energy storage, in situ XANES measurements, high-voltage plateau
National Category
Natural Sciences Inorganic Chemistry
Research subject
Chemistry with specialization in Inorganic Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-337712DOI: 10.1021/acsami.7b13472ISI: 000422814400053PubMedID: 29098854OAI: oai:DiVA.org:uu-337712DiVA, id: diva2:1170592
Funder
StandUpSwedish Research Council, 2015-05106Available from: 2018-01-03 Created: 2018-01-03 Last updated: 2018-02-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Asfaw, Habtom DestaEdström, Kristina

Search in DiVA

By author/editor
Asfaw, Habtom DestaEdström, KristinaSaadoune, Ismael
By organisation
Structural Chemistry
In the same journal
ACS Applied Materials and Interfaces
Natural SciencesInorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 60 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf