uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fluorine clusters at CeO2(111) - A DFT+U and Monte Carlostudy
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
Computational Biophysics, University of Twente, The Netherlands 3.
Show others and affiliations
2017 (English)Conference paper, Oral presentation with published abstract (Other academic)
Abstract [en]

STM experiments on CeO2(111) reveal depressions in the surface oxygen sub-lattice which are observed to form clusters of various shapes and sizes [1].While these depressions were assumed to be oxygen vacancies, subsequent DFTcalculations have indicated that clusters of oxygen vacancies are energeticallyunstable [2-4]. Recently, we showed theoretically that fluorine impurities shouldappear almost identical to oxygen vacancies in STM experiments, but that theirproperties are more in line with those of the defects observed in experiments [5].Here, I will present the results of a further investigation into the distribution ofF impurity clusters at CeO2(111), using a combination of DFT+U calculations,and Monte Carlo sampling based on a simple but accurate pair potential whichwas fitted to the DFT results. The distribution is characterised in terms of thenumber of clusters of a certain size, and also on their topology, i.e. whetherthey are compact or open/linea r. Our results compare favourably with theexperiments, and also exhibit some interesting physics in their own right.

[1] F. Esch et al., Science 309, 752 (2005).[2] J. Conesa, Cat. Today 143, 315 (2009).[3] C. Zhang et al., Phys. Rev. B 79, 075433 (2009).[4] X.-P. Wu & X.-Q. Gong, Phys. Rev. Lett. 116, 086102 (2016).[5] J. Kullgren, M. J. Wolf et al., Phys. Rev. Lett. 112, 156102 (2014).

Place, publisher, year, edition, pages
2017.
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:uu:diva-338364OAI: oai:DiVA.org:uu-338364DiVA, id: diva2:1171953
Conference
Towards Reality in Nanoscale Materials IX Nanoscale Materials for Warfare Agent Detection: Nanoscience for Security 13th – 16th February 2017 Levi, Finland
Available from: 2018-01-08 Created: 2018-01-08 Last updated: 2018-02-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Wolf, Matthew J.Hermansson, KerstiMitev, Pavlin D.Kullgren, Jolla

Search in DiVA

By author/editor
Wolf, Matthew J.Hermansson, KerstiMitev, Pavlin D.Kullgren, Jolla
By organisation
Structural Chemistry
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf