uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Pacifastacus leniusculus serine protease interacts with WSSV
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Comparative Physiology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Comparative Physiology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Comparative Physiology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Comparative Physiology.
Show others and affiliations
2017 (English)In: Fish and Shellfish Immunology, ISSN 1050-4648, E-ISSN 1095-9947, Vol. 68, p. 211-219Article in journal (Refereed) Published
Abstract [en]

Serine proteases are involved in many critical physiological processes including virus spread and replication. In the present study, we identified a new clip-domain serine protease (PIcSP) in the crayfish Pacifastacus leniusculus hemocytes, which can interact with the White Spot Syndrome Virus (WSSV) envelope protein VP28. It was characterized by a classic clip domain with six strictly conserved Cys residues, and contained the conserved His-Asp-Ser (H-D-S)motif in the catalytic domain. Furthermore, signal peptide prediction revealed that it has a 16-residue secretion signal peptide. Tissue distribution showed that it was mainly located in P. leniusculus hemocytes, and its expression was increased in hemocytes upon WSSV challenge. In vitro knock down of PIcSP decreased both the expression of VP28 and the WSSV copy number in hematopoietic stem (HPT) cells. Accordingly, these data suggest that the new serine protease may be of importance for WSSV infection into hematopoietic cells.

Place, publisher, year, edition, pages
2017. Vol. 68, p. 211-219
Keywords [en]
Hematopoietic tissue, Invertebrate, Serine protease, Virus, WSSV
National Category
Immunology
Identifiers
URN: urn:nbn:se:uu:diva-335858DOI: 10.1016/j.fsi.2017.07.026ISI: 000411299500022PubMedID: 28705723OAI: oai:DiVA.org:uu-335858DiVA, id: diva2:1177133
Funder
Swedish Research Council, 621-2012-2418Available from: 2018-01-24 Created: 2018-01-24 Last updated: 2018-06-26Bibliographically approved
In thesis
1. Interaction between crayfish and some microorganisms; Effect of temperature
Open this publication in new window or tab >>Interaction between crayfish and some microorganisms; Effect of temperature
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Innate immunity, which constitutes the first line of defense in vertebrates, is the only immune system that invertebrates rely on to protect themselves from pathogens. The invertebrate immune system is composed of cellular and humoral components. Cellular immunity is phagocytosis, opsonization and encapsulation. The humoral part is mainly composed of the events taking place upon secretion of granules and the enzymes within that lead to the lysis of the pathogen by antimicrobial peptides (AMPs) and the melanization cascade. The Prophenoloxidase (proPO) activating system is an important pathway that is stored in the granules of semigranular and granular hemocytes (blood cells). These cells will degranulate and release the proPO system when activated upon pathogen recognition. This cascade results in the melanization reaction and to trap and eliminate pathogens. 

White spot syndrome virus (WSSV) is a deadly pathogen mainly targeting crustaceans and causing huge economic losses since its first emergence in 1992 in Taiwan. It is known that WSSV disables the immune system of the host by interfering with the proPO cascade. Temperature is a restricting factor for the WSSV infections however it is not known if its affects are on host immunity or on the virus itself.

With the aim of elucidating WSSV infection, we studied the virus entry mechanisms. By crosslinking WSSV with the hemocytes we showed that a new clip-domain serine protease (PlcSP) plays an important role during the WSSV infection in crayfish by means of interacting with WSSV envelope protein VP28. Moreover, we have shown that the viral entry is inhibited at cold temperatures due to temperature’s inhibitory effect on PlcSP expression. We also showed that by slowing down of the host’s metabolism hence proliferation in host tissue either by low temperature or cell cycle inhibitors, we could inhibit WSSV replication once it has entered the host cell. We tested if the temperature effects host or pathogen, or both, we investigated the mortalities, phagocytosis, bacterial clearance, total hemocyte counts, degranulation and melanization rate of crayfish under a cold and warm temperature by using two strains of gram-negative bacteria and LPS. It is apparent that the cellular immunity is more effective at low temperature while the humoral immunity can become overactivated and toxic for the host at higher temperature. Furthermore, we aimed to study the cleavage specificity for PlcSP since it is predicted to be secreted from hemocytes and takes part in the serine protease cascade during melanization reaction.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2018. p. 50
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1688
National Category
Immunology
Identifiers
urn:nbn:se:uu:diva-355147 (URN)978-91-513-0374-1 (ISBN)
Public defence
2018-09-13, Lindahlsalen, Norbyvägen 14, Uppsala, 13:00 (English)
Opponent
Supervisors
Available from: 2018-08-21 Created: 2018-06-26 Last updated: 2018-08-27

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Korkut, Gül GizemSöderhäll, IreneSöderhäll, Kenneth

Search in DiVA

By author/editor
Korkut, Gül GizemSöderhäll, IreneSöderhäll, Kenneth
By organisation
Comparative Physiology
In the same journal
Fish and Shellfish Immunology
Immunology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 55 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf