uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimal timing of tau pathology imaging and automatic extraction of a reference region using dynamic [18F]THK5317 PET
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences. (Nuclear Medicine and PET)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences. (Nuclear Medicine and PET)
Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.
Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Keyword [en]
Alzheimer’s disease, PET, Parametric images, Supervised clustering, Tau imaging
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-341785OAI: oai:DiVA.org:uu-341785DiVA, id: diva2:1182858
Available from: 2018-02-14 Created: 2018-02-14 Last updated: 2018-02-15
In thesis
1. Towards Clinical Implementation of Dynamic Positron Emission Tomography in Neurodegenerative Diseases
Open this publication in new window or tab >>Towards Clinical Implementation of Dynamic Positron Emission Tomography in Neurodegenerative Diseases
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the two most common neurodegenerative disorders worldwide. Positron emission tomography (PET), together with suitable biomarkers, can aid in the clin-ical evaluation as well as in research investigations of these diseases. Straightforward and quantitative assessments of the parameters of inter-est estimated on a voxel-level, as parametric images, are possible when PET data is acquired over time. Prerequisites to facilitate clinical use of dynamic PET are simplified analysis methods and scan protocols suita-ble for clinical routine.

The aim of this thesis was to validate simplified analysis methods, suitable for clinical use, for quantification of dopamine transporter (DAT) availability in patients with parkinsonism using [11C]PE2I PET and tau accumulation in AD patients with [18F]THK5317 PET.

The included subjects comprised of both healthy controls and pa-tients with parkinsonism, AD or mild cognitive impairment and each subject underwent a dynamic PET scan with either [11C]PE2I or [18F]THK5317. Models for quantitative voxel-based analysis, resulting in parametric images of tracer binding and overall brain function, were validated in both patients and controls. These parametric methods were compared to region-based values acquired using both plasma- and refer-ence-input models. Clinically feasible scan durations were evaluated for both [11C]PE2I and [18F]THK5317, and a clustering method to obtain a reference time activity curve directly from the dynamic PET data was validated. Furthermore, images of DAT availability and overall brain functional activity, generated from one single dynamic [11C]PE2I PET scan, were compared to a dual-scan approach using [123I]FP-CIT single photon emission computed tomography (SPECT) and [18F]FDG PET, for differential diagnosis of patient with parkinsonism.

Study I-III supply valuable information on the feasibility of dynamic [11C]PE2I in a clinical setting for differential diagnosis of parkinsonian disorders, by having easily accessible images of DAT availability and overall brain functional activity. The work in study IV-V showed that reference methods can be used for quantification of tau accumulation, and suggests that simplified analysis methods and shorter scan durations can be applied to further facilitate applications of dynamic [18F]THK5317 PET.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2018. p. 55
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1429
Keyword
Positron emission tomography, PET, Molecular imaging, Quantification, Kinetic modelling, Parametric images, Alzheimer’s disease, Parkinson’s disease
National Category
Radiology, Nuclear Medicine and Medical Imaging
Research subject
Radiology
Identifiers
urn:nbn:se:uu:diva-341786 (URN)978-91-513-0238-6 (ISBN)
Public defence
2018-04-06, Skoogsalen, Akademiska Sjukhuset, Ing 79, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2018-03-14 Created: 2018-02-15 Last updated: 2018-04-24

Open Access in DiVA

No full text in DiVA

Authority records BETA

Jonasson, MyWall, AndersLubberink, Mark

Search in DiVA

By author/editor
Jonasson, MyWall, AndersLubberink, Mark
By organisation
Department of Surgical SciencesDepartment of Medicinal Chemistry
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 25 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf