uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Atomic adsorption on graphene with a single vacancy: systematic DFT study through the periodic table of elements
Univ Belgrade, Fac Phys Chem, Studentski Trg 12-16, Belgrade 11158, Serbia..
Univ Belgrade, Fac Phys Chem, Studentski Trg 12-16, Belgrade 11158, Serbia.;CEST Kompetenzzentrum Elekrochem Oberflachentechn, Viktor Kaplan Str 2,Sect A, A-2700 Wiener Neustadt, Austria..
Univ Belgrade, Fac Phys Chem, Studentski Trg 12-16, Belgrade 11158, Serbia..
Univ Belgrade, Fac Phys Chem, Studentski Trg 12-16, Belgrade 11158, Serbia.;Serbian Acad Arts & Sci, Knez Mihajlova 35, Belgrade 11000, Serbia..
Show others and affiliations
2018 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 20, no 2, p. 858-865Article in journal (Refereed) Published
Abstract [en]

Vacancies in graphene present sites of altered chemical reactivity and open possibilities to tune graphene properties by defect engineering. The understanding of chemical reactivity of such defects is essential for successful implementation of carbon materials in advanced technologies. We report the results of a systematic DFT study of atomic adsorption on graphene with a single vacancy for the elements of rows 1-6 of the periodic table of elements (PTE), excluding lanthanides. The calculations have been performed using the PBE, long-range dispersion interaction-corrected PBE (PBE+D2 and PBE+D3) and non-local vdW-DF2 functionals. We find that most elements strongly bind to the vacancy, except for the elements of groups 11 and 12, and noble gases, for which the contribution of dispersion interaction to bonding is most significant. The strength of the interaction with the vacancy correlates with the cohesive energy of the elements in their stable phases: the higher the cohesive energy is, the stronger bonding to the vacancy can be expected. As most atoms can be trapped at the SV site we have calculated the potentials of dissolution and found that in most cases the metals adsorbed at the vacancy are more "noble" than they are in their corresponding stable phases.

Place, publisher, year, edition, pages
2018. Vol. 20, no 2, p. 858-865
National Category
Chemical Sciences Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-341487DOI: 10.1039/c7cp07542aISI: 000419219700015PubMedID: 29238768OAI: oai:DiVA.org:uu-341487DiVA, id: diva2:1186430
Available from: 2018-02-28 Created: 2018-02-28 Last updated: 2018-02-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Johansson, BörjeSkorodumova, Natalia V.

Search in DiVA

By author/editor
Johansson, BörjeSkorodumova, Natalia V.
By organisation
Materials Theory
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Chemical SciencesPhysical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf