uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
MMS Observations of Reconnection at Dayside Magnetopause Crossings During Transitions of the Solar Wind to Sub-Alfvenic Flow
Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
Show others and affiliations
2017 (English)In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, no 10, p. 9934-9951Article in journal (Refereed) Published
Abstract [en]

We present MMS observations during two dayside magnetopause crossings under hitherto unexamined conditions: (i) when the bow shock is weakening and the solar wind transitioning to sub-Alfvenic flow and (ii) when it is reforming. Interplanetary conditions consist of a magnetic cloud with (i) a strong B (similar to 20 nT) pointing south and (ii) a density profile with episodic decreases to values of similar to 0.3 cm(-3) followed by moderate recovery. During the crossings the magnetosheath magnetic field is stronger than the magnetosphere field by a factor of similar to 2.2. As a result, during the outbound crossing through the ion diffusion region, MMS observed an inversion of the relative positions of the X and stagnation (S) lines from that typically the case: the S line was closer to the magnetosheath side. The S line appears in the form of a slow expansion fan near which most of the energy dissipation is taking place. While in the magnetosphere between the crossings, MMS observed strong field and flow perturbations, which we argue to be due to kinetic Alfven waves. During the reconnection interval, whistler mode waves generated by an electron temperature anisotropy (T-e perpendicular to > T-e parallel to) were observed. Another aim of the paper is to distinguish bow shock-induced field and flow perturbations from reconnection-related signatures. The high-resolution MMS data together with 2-D hybrid simulations of bow shock dynamics helped us to distinguish between the two sources. We show examples of bow shock-related effects (such as heating) and reconnection effects such as accelerated flows satisfying the Walen relation.

Place, publisher, year, edition, pages
American Geophysical Union (AGU), 2017. Vol. 122, no 10, p. 9934-9951
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:uu:diva-342095DOI: 10.1002/2017JA024563ISI: 000419937800014OAI: oai:DiVA.org:uu-342095DiVA, id: diva2:1187168
Available from: 2018-03-02 Created: 2018-03-02 Last updated: 2018-03-02Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Khotyaintsev, Yuri V.

Search in DiVA

By author/editor
Khotyaintsev, Yuri V.
By organisation
Swedish Institute of Space Physics, Uppsala Division
In the same journal
Journal of Geophysical Research - Space Physics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf