uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The hydraulic conductivity of the rat proximal tubular wall determined with colloidal solutions
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Physiology and Medical Biophysics.
1975 (English)In: Pflügers Archiv: European Journal of Physiology, ISSN 0031-6768, E-ISSN 1432-2013, Vol. 360, no 1, p. 25-44Article in journal (Refereed) Published
Abstract [en]

The hydraulic conductivity of the rat proximal tubular wall was determined using colloidal solutions perfused in short (50--200 mum) (SMP) or long (90--200 mum) (LMP) proximal tubular segments. In SMP human serum albumin (HSA) or polyvinylpyrrolidone (PVP) was added to raffinose solutions. A Lp of 0.019 nl-min-1-mm-1-mm Hg-1 was found when high colloid concentrations were used while values of 0.055--0.092 were found when low colloid concentrations were used. In other experiments, the Lp was determined by perfusing short tubular segments with pure raffinose solutions. A value of 0.015 nl-min-1-mm-1-mm Hg-1 was found. This is twice the value found when raffinose solutions were perfused through long tubular segments and it is concluded that the short microperfusion technique overestimates Lp with a factor of two. When microperfusions of long tubular segments were conducted, PVP was added to an equilibrium solution consisting of NaCl (110 mM) and raffinose (80 mM). Lp was found to be 0.018--0.021 when high colloid concentrations were used, while a value of 0.029 was found when a low colloid concentration was used. As found in both SMP and LMP a decrease in Lp's with increasing colloid concentrations indicates that a significant influence of radial concentration differences is highly probable. It is therefore suggested that the highest Lp derived when using the lowest colloid concentrations represents the best estimate. With this Lp value (0.03--0.05 nl-min-1-mm-1-mm Hg-1) and the existing transtubular hydrostatic and oncotic pressure difference it can be calculated that these passive forces might constitute the driving force for 1/3 of the fluid reabsorbed in the proximal tubule.

Place, publisher, year, edition, pages
1975. Vol. 360, no 1, p. 25-44
National Category
Physiology
Identifiers
URN: urn:nbn:se:uu:diva-347039PubMedID: 1237863OAI: oai:DiVA.org:uu-347039DiVA, id: diva2:1192854
Available from: 2018-03-23 Created: 2018-03-23 Last updated: 2018-03-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

PubMed

Authority records BETA

Eriksson, Nils-Einar

Search in DiVA

By author/editor
Eriksson, Nils-Einar
By organisation
Department of Physiology and Medical Biophysics
In the same journal
Pflügers Archiv: European Journal of Physiology
Physiology

Search outside of DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetric score

pubmed
urn-nbn
Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf