uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Membrane vesiculation induced by proteins of the dengue virus envelope studied by molecular dynamics simulations
Fac Med Marilia, Marilia, Brazil..
Univ Sao Paulo, Fac Ciencias Farmaceut Ribeirao Preto, Dept Fis & Quim, Grp Fis Biol, Ribeirao Preto, Brazil..
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational Biology and Bioinformatics. Uppsala University, Science for Life Laboratory, SciLifeLab.ORCID iD: 0000-0002-7659-8526
Univ Sao Paulo, Fac Ciencias Farmaceut Ribeirao Preto, Dept Fis & Quim, Grp Fis Biol, Ribeirao Preto, Brazil..
2017 (English)In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 29, no 50, article id 504002Article in journal (Refereed) Published
Abstract [en]

Biological membranes are continuously remodeled in the cell by specific membrane-shaping machineries to form, for example, tubes and vesicles. We examine fundamental mechanisms involved in the vesiculation processes induced by a cluster of envelope (E) and membrane (M) proteins of the dengue virus (DENV) using molecular dynamics simulations and a coarse-grained model. We show that an arrangement of three E-M heterotetramers (EM3) works as a bending unit and an ordered cluster of five such units generates a closed vesicle, reminiscent of the virus budding process. In silico mutagenesis of two charged residues of the anchor helices of the envelope proteins of DENV shows that Arg-471 and Arg-60 are fundamental to produce bending stress on the membrane. The fine-tuning between the size of the EM3 unit and its specific bending action suggests this protein unit is an important factor in determining the viral particle size.

Place, publisher, year, edition, pages
Institute of Physics Publishing (IOPP), 2017. Vol. 29, no 50, article id 504002
Keyword [en]
dengue, virus, simulation, GROMACS, envelope
National Category
Biophysics Condensed Matter Physics
Identifiers
URN: urn:nbn:se:uu:diva-347662DOI: 10.1088/1361-648X/aa99c6ISI: 000425266500001PubMedID: 29125472OAI: oai:DiVA.org:uu-347662DiVA, id: diva2:1195638
Funder
Swedish Research Council, 2013-5947
Available from: 2018-04-06 Created: 2018-04-06 Last updated: 2018-04-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

van Der Spoel, David

Search in DiVA

By author/editor
van Der Spoel, David
By organisation
Computational Biology and BioinformaticsScience for Life Laboratory, SciLifeLab
In the same journal
Journal of Physics: Condensed Matter
BiophysicsCondensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 12 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf