uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Conceptual design of a BackTOF neutron spectrometer for fuel ion ratio measurements at ITER
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Show others and affiliations
2017 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 6, article id 066021Article in journal (Refereed) Published
Abstract [en]

In this paper we present a conceptual design of a back scattering neutron time of flight spectrometer (BackTOF) for use at ITER. The proposed BackTOF design aims at fulfilling the requirements set on a neutron spectrometer system to be used for inferring the core fuel ion ratio in a DT plasma. Specifically we have investigated the requirements on the size, energy resolution, count rate capability, efficiency and signal to background ratio. These requirements are a compact size that fits in roughly 1 m3, an energy resolution of 4% or better, a count rate capability of at least 100 kHz, an efficiency of at least 10−5 and a signal to background ratio of 1000 or better.

Using a Monte Carlo model of the BackTOF spectrometer we find that the proposed BackTOF design is compact enough to be installed at ITER while being capable of achieving a resolution of about 4% FWHM with a count rate capability of 300 kHz and an efficiency at 1.25 10−3. This is sufficient for achieving the requirements on the fuel ion ratio at ITER. We also demonstrate how data acquisition systems capable of providing both timing and energy information can be used to effectively discriminate random background at high count rates.

Place, publisher, year, edition, pages
2017. Vol. 57, no 6, article id 066021
Keywords [en]
neutron spectroscopy, time of flight, burning plasma, fuel ion ratio
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:uu:diva-348803DOI: 10.1088/1741-4326/aa6937ISI: 000425870000001OAI: oai:DiVA.org:uu-348803DiVA, id: diva2:1203727
Available from: 2018-05-04 Created: 2018-05-04 Last updated: 2018-05-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Hellesen, CarlAndersson Sundén, ErikConroy, SeanDzysiuk, NataliiaEricsson, GöranHjalmarsson, AndersEriksson, JacobMarcinkevicius, Benjaminas

Search in DiVA

By author/editor
Hellesen, CarlAndersson Sundén, ErikConroy, SeanDzysiuk, NataliiaEricsson, GöranHjalmarsson, AndersEriksson, JacobMarcinkevicius, Benjaminas
By organisation
Applied Nuclear Physics
In the same journal
Nuclear Fusion
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 13 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf