uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Using interfaces to influence thermodynamic properties of metal hydrides
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We report profound proximity effects on the enthalpy of solution and critical temperature ofnano-sized vanadium hydrides. We use single crystalline Cr/V and Fe/V (001) superlattices forthese studies, in which the V layers are under close to identical strain. The thermodynamic propertiesare determined using isothermal pressure and optical transmission measurements, utilisingthe fully reversibel hydrogen uptake and release.The underlying mechanism is argued to be rootedin a radically different volume expansion in the two systems, arising from different site occupancyof hydrogen in Fe/V(001) and Cr/V(001). The optical transmission is found to be linear withconcentration in both types of superlattices, while exhibiting different slopes. The differences areattributed to changes in electron density arising from the volume expansion, rather than a directinfluence from a redistribution of electronic states.

National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:uu:diva-350589OAI: oai:DiVA.org:uu-350589DiVA, id: diva2:1205454
Available from: 2018-05-14 Created: 2018-05-14 Last updated: 2018-09-14Bibliographically approved
In thesis
1. The effect of nano-confinement on hydrogen uptake in metallic superlattices
Open this publication in new window or tab >>The effect of nano-confinement on hydrogen uptake in metallic superlattices
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The absorption of hydrogen is exothermic in vanadium whereas it is endothermic in iron and chromium. Investigations of the hydrogen uptake within Fe/V(001) and Cr/V(001) superlattices allow therefore a detailed exploration of finite size effects and the influence of boundaries on hydrogen absorption. Fe/V(001) and Cr/V(001) superlattices can be grown as single crystal structures with a small mosaic spread, as determined by X-ray reflectometry and diffraction. Furthermore when the thickness ratio of the constituents is kept constant the crystal quality can be retained in the range from a few up to 40 monolayer repeat distances (Λ). Neutron reflectometry was used to simultaneously determine the volume expansion and concentration of hydrogen in the vanadium layers. Large differences are found in the expansion of Fe/V(001) and Cr/V(001) superlattices, in good agreement with density functional theory (DFT) calculations. The findings are consistent with tetrahedral and octahedral site occupancy in Cr/V(001) and Fe/V(001) superlattices, respectively. Full fitting of the reflectivity pattern is required to obtainan accurate measure of expansion if the number of repeats is small. Under these conditions, the shift of the first order superlattice peak can be an inaccurate measure of the volume changes. By using a specially designed neutron scattering chamber, allowing simultaneous neutron and optical transmission measurements, it is found that the optical transmission scales linearly with hydrogen concentration. By comparing the experimental results to ab-initio DFT calculations, it is shown that optical transmission scales with electron density changes in the samples, explaining the linearity with concentration. This change is dominated by the hydrogen induced expansion of the lattices and depends therefore strongly on the site occupancy of the hydrogen. Finally, X-ray diffraction was used to address the local strain fields and the α to β phase transition, typically observed in bulk vanadium. Below 448 K the results are consistent with an α to β phase co-existence, separated along the surface normal of the samples.

Place, publisher, year, edition, pages
Uppsala: Uppsala University, 2018. p. 65
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1682
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-350591 (URN)978-91-513-0360-4 (ISBN)
Public defence
2018-06-14, Room 2001, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:00 (English)
Opponent
Supervisors
Available from: 2018-05-22 Created: 2018-05-14 Last updated: 2018-09-27

Open Access in DiVA

No full text in DiVA

Authority records BETA

Droulias, Sotirios A.Grånäs, OscarHartmann, OlaWolff, MaxHjörvarsson, BjörgvinPálsson, Gunnar K.

Search in DiVA

By author/editor
Droulias, Sotirios A.Grånäs, OscarHartmann, OlaWolff, MaxHjörvarsson, BjörgvinPálsson, Gunnar K.
By organisation
Materials PhysicsMaterials Theory
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 261 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf