uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Zinc finger gene nolz1 regulates the formation of retinal progenitor cells and suppresses the Lim3/Lhx3 phenotype of retinal bipolar cells in chicken retina
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Neuroscience.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Neuroscience.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Neuroscience.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Neuroscience.
2018 (English)In: Developmental Dynamics, ISSN 1058-8388, E-ISSN 1097-0177, Vol. 247, no 4, p. 630-641Article in journal (Refereed) Published
Abstract [en]

Background: The zinc-finger transcription factor Nolz1 regulates spinal cord neuron development by interacting with the transcription factors Isl1, Lim1, and Lim3, which are also important for photoreceptors, horizontal and bipolar cells during retinal development. We, therefore, studied Nolz1 during retinal development.

Results: Nolz1 expression was seen in two waves during development: one early (peak at embryonic day 3-4.5) in retinal progenitors and one late (embryonic day 8) in newly differentiated cells in the inner nuclear layer. Overexpression and knockdown showed that Nolz1 decreases proliferation and stimulates cell cycle withdrawal in retinal progenitors with effects on the generation of retinal ganglion cells, photoreceptors, and horizontal cells without triggering apoptosis. Overexpression of Nolz1 gave more p27 positive cells. Sustained overexpression of Nolz1 in the retina gave fewer Lim3/Lhx3 bipolar cells.

Conclusions: We conclude that Nolz1 has multiple functions during development and suggest a mechanism in which Nolz1 initially regulates the proliferation state of the retinal progenitor cells and then acts as a repressor that suppresses the Lim3/Lhx3 bipolar cell phenotype at the time of bipolar cell differentiation.

Place, publisher, year, edition, pages
WILEY , 2018. Vol. 247, no 4, p. 630-641
Keywords [en]
chicken embryo, differentiation, horizontal cells, in ovo electroporation, Isl1, Lim1, morpholino, p27, piggyback, photoreceptors, repressor
National Category
Neurosciences
Identifiers
URN: urn:nbn:se:uu:diva-350726DOI: 10.1002/dvdy.24607ISI: 000427563200005PubMedID: 29139167OAI: oai:DiVA.org:uu-350726DiVA, id: diva2:1206436
Funder
Swedish Research Council, MH521.2013.3346]Swedish Childhood Cancer Foundation, PR20150122]Available from: 2018-05-17 Created: 2018-05-17 Last updated: 2018-05-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Konjusha, DardanRing, HenrikHallböök, Finn

Search in DiVA

By author/editor
Konjusha, DardanRing, HenrikHallböök, Finn
By organisation
Developmental Neuroscience
In the same journal
Developmental Dynamics
Neurosciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 22 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf