uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Topological nodal superconducting phases and topological phase transition in the hyperhoneycomb lattice
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
2018 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 97, no 10, article id 104508Article in journal (Refereed) Published
Abstract [en]

We establish the topology of the spin-singlet superconducting states in the bare hyperhoneycomb lattice, and we derive analytically the full phase diagram using only symmetry and topology in combination with simple energy arguments. The phase diagram is dominated by two states preserving time-reversal symmetry. We find a line-nodal state dominating at low doping levels that is topologically nontrivial and exhibits surface Majorana flatbands, which we show perfectly match the bulk-boundary correspondence using the Berry phase approach. At higher doping levels, we find a fully gapped state with trivial topology. By analytically calculating the topological invariant of the nodal lines, we derive the critical point between the line-nodal and fully gapped states as a function of both pairing parameters and doping. We find that the line-nodal state is favored not only at lower doping levels but also if symmetry-allowed deformations of the lattice are present. Adding simple energy arguments, we establish that a fully gapped state with broken time-reversal symmetry likely appears covering the actual phase transition. We find this fully gapped state to be topologically trivial, while we find an additional point-nodal state at very low doing levels that also break time-reversal symmetry and has nontrivial topology with associated Fermi surface arcs. We eventually address the robustness of the phase diagram to generalized models also including adiabatic spin-orbit coupling, and we show how all but the point-nodal state are reasonably stable.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC , 2018. Vol. 97, no 10, article id 104508
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:uu:diva-351437DOI: 10.1103/PhysRevB.97.104508ISI: 000427354100005OAI: oai:DiVA.org:uu-351437DiVA, id: diva2:1211885
Funder
Swedish Research Council, 621-2014-3721]Knut and Alice Wallenberg FoundationAvailable from: 2018-05-31 Created: 2018-05-31 Last updated: 2018-05-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Bouhon, AdrienSchmidt, JohannBlack-Schaffer, Annica M.

Search in DiVA

By author/editor
Bouhon, AdrienSchmidt, JohannBlack-Schaffer, Annica M.
By organisation
Materials Theory
In the same journal
Physical Review B
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 12 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf