uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Investigation of the spectral properties and magnetism of BiFeO3 by dynamical mean-field theory
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.ORCID iD: 0000-0001-7467-9317
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Show others and affiliations
2018 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 97, no 12, article id 125120Article in journal (Refereed) Published
Abstract [en]

Using the local density approximation plus dynamical mean-field theory (LDA+DMFT), we have computed the valence-band photoelectron spectra and magnetic excitation spectra of BiFeO3, one of the most studied multiferroics. Within the DMFT approach, the local impurity problem is tackled by the exact diagonalization solver. The solution of the impurity problem within the LDA+DMFT method for the paramagnetic and magnetically ordered phases produces result in agreement with the experimental data on electronic and magnetic structures. For comparison, we also present results obtained by the LDA+U approach which is commonly used to compute the physical properties of this compound. Our LDA+DMFT derived electronic spectra match adequately with the experimental hard x-ray photoelectron spectroscopy and resonant photoelectron spectroscopy for Fe 3d states, whereas the LDA+U method fails to capture the general features of the measured spectra. This indicates the importance of accurately incorporating the dynamical aspect of electronic correlation among Fe 3d orbitals to reproduce the experimental excitation spectra. Specifically, the LDA+DMFT derived density of states exhibits a significant amount of Fe 3d states at the position of Bi lone pairs, implying that the latter are not alone in the spectral scenario. This fact might modify our interpretation about the origin of ferroelectric polarization in this material. Our study demonstrates that the combination of orbital cross sections for the constituent elements and broadening schemes for the spectral functions are crucial to explain the detailed structures of the experimental electronic spectra. Our magnetic excitation spectra computed from the LDA+DMFT result conform well with the inelastic neutron scattering data.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC , 2018. Vol. 97, no 12, article id 125120
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:uu:diva-351431DOI: 10.1103/PhysRevB.97.125120ISI: 000427602000002OAI: oai:DiVA.org:uu-351431DiVA, id: diva2:1212206
Funder
Swedish Research CouncilCarl Tryggers foundation Available from: 2018-06-01 Created: 2018-06-01 Last updated: 2018-06-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Paul, SouvikIusan, DianaThunström, PatrikKvashnin, YaroslavPereiro, ManuelDelin, AnnaKnut, RonnyPhuyal, DibyaLindblad, AndreasKaris, OlofSanyal, BiplabEriksson, Olle

Search in DiVA

By author/editor
Paul, SouvikIusan, DianaThunström, PatrikKvashnin, YaroslavPereiro, ManuelDelin, AnnaKnut, RonnyPhuyal, DibyaLindblad, AndreasKaris, OlofSanyal, BiplabEriksson, Olle
By organisation
Materials TheoryMolecular and Condensed Matter Physics
In the same journal
Physical Review B
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf