uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England.
Indiana Univ, Diabet Translat Res Ctr, Dept Epidemiol, Indianapolis, IN 46204 USA;Indiana Univ, Diabet Translat Res Ctr, Dept Med, Indianapolis, IN 46204 USA.
Univ Cambridge, Inst Metab Sci, MRC Epidemiol Unit, Cambridge, England.
Univ Penn, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA.
Show others and affiliations
2018 (English)In: Nature Genetics, ISSN 1061-4036, E-ISSN 1546-1718, Vol. 50, no 4, p. 559-571Article in journal (Refereed) Published
Abstract [en]

We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 x 10(-7)); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio <= 1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.

Place, publisher, year, edition, pages
NATURE PUBLISHING GROUP , 2018. Vol. 50, no 4, p. 559-571
National Category
Medical Genetics
Identifiers
URN: urn:nbn:se:uu:diva-352709DOI: 10.1038/s41588-018-0084-1ISI: 000429529300016PubMedID: 29632382OAI: oai:DiVA.org:uu-352709DiVA, id: diva2:1214825
Available from: 2018-06-07 Created: 2018-06-07 Last updated: 2018-06-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Gustafsson, StefanGiedraitis, VilmantasIngelsson, MartinIngelsson, ErikLind, Lars

Search in DiVA

By author/editor
Gustafsson, StefanGiedraitis, VilmantasIngelsson, MartinIngelsson, ErikLind, Lars
By organisation
Molecular epidemiologyScience for Life Laboratory, SciLifeLabGeriatricsCardiovascular epidemiology
In the same journal
Nature Genetics
Medical Genetics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf