uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The genome and microbiome of a dikaryotic fungus (Inocybe terrigena, Inocybaceae) revealed by metagenomics
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Systematic Biology. Univ Tartu, Inst Ecol & Earth Sci, Dept Bot, 40 Lai St, EE-51005 Tartu, Estonia;Swedish Univ Agr Sci, Dept Ecol, Uppsala, Sweden.
Univ Montana, Div Biol Sci, 32 Campus Dr, Missoula, MT 59812 USA.
Univ Tartu, Inst Ecol & Earth Sci, Dept Bot, 40 Lai St, EE-51005 Tartu, Estonia.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Systematic Biology.
Show others and affiliations
2018 (English)In: Environmental Microbiology Reports, ISSN 1758-2229, E-ISSN 1758-2229, Vol. 10, no 2, p. 155-166Article in journal (Refereed) Published
Abstract [en]

Recent advances in molecular methods have increased our understanding of various fungal symbioses. However, little is known about genomic and microbiome features of most uncultured symbiotic fungal clades. Here, we analysed the genome and microbiome of Inocybaceae (Agaricales, Basidiomycota), a largely uncultured ectomycorrhizal clade known to form symbiotic associations with a wide variety of plant species. We used metagenomic sequencing and assembly of dikaryotic fruiting-body tissues from Inocybe terrigena (Fr.) Kuyper, to classify fungal and bacterial genomic sequences, and obtained a nearly complete fungal genome containing 93% of core eukaryotic genes. Comparative genomics reveals that I. terrigena is more similar to ectomycorrhizal and brown rot fungi than to white rot fungi. The reduction in lignin degradation capacity has been independent from and significantly faster than in closely related ectomycorrhizal clades supporting that ectomycorrhizal symbiosis evolved independently in Inocybe. The microbiome of I. terrigena fruiting-bodies includes bacteria with known symbiotic functions in other fungal and non-fungal host environments, suggesting potential symbiotic functions of these bacteria in fungal tissues regardless of habitat conditions. Our study demonstrates the usefulness of direct metagenomics analysis of fruiting-body tissues for characterizing fungal genomes and microbiome.

Place, publisher, year, edition, pages
WILEY , 2018. Vol. 10, no 2, p. 155-166
National Category
Microbiology
Identifiers
URN: urn:nbn:se:uu:diva-353114DOI: 10.1111/1758-2229.12612ISI: 000428391900005PubMedID: 29327481OAI: oai:DiVA.org:uu-353114DiVA, id: diva2:1216043
Available from: 2018-06-11 Created: 2018-06-11 Last updated: 2018-06-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Bahram, MohammadHiltunen, MarkusRyberg, Martin

Search in DiVA

By author/editor
Bahram, MohammadHiltunen, MarkusRyberg, Martin
By organisation
Systematic Biology
In the same journal
Environmental Microbiology Reports
Microbiology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf