uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Stochastic simulation of pattern formation in growing tissue: A multilevel approach
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.ORCID iD: 0000-0002-3614-1732
2019 (English)In: Bulletin of Mathematical Biology, ISSN 0092-8240, E-ISSN 1522-9602, Vol. 81Article in journal (Refereed) Epub ahead of print
Place, publisher, year, edition, pages
2019. Vol. 81
National Category
Computational Mathematics Cell Biology
Identifiers
URN: urn:nbn:se:uu:diva-354940DOI: 10.1007/s11538-018-0454-yOAI: oai:DiVA.org:uu-354940DiVA, id: diva2:1223211
Projects
eSSENCEAvailable from: 2018-06-20 Created: 2018-06-25 Last updated: 2018-11-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Engblom, Stefan

Search in DiVA

By author/editor
Engblom, Stefan
By organisation
Division of Scientific ComputingComputational Science
In the same journal
Bulletin of Mathematical Biology
Computational MathematicsCell Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 133 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf