uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spectroscopic Fingerprints of Carbon Nitride Functional Groups Locked-up in Intermolecular H-bonding Interactions
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.ORCID iD: 0000-0001-8739-7773
Department of Physics University of Trieste.
Show others and affiliations
(English)In: Chemistry: A European Journal, ISSN 0947-6539Article in journal (Refereed) Submitted
Abstract [en]

We have investigated the effect of intermolecular H- bonding interactions on the local electronic structure of N- functionalities, amino group and pyridine-like N, which are characteristic of a new class of metal-free polymeric photo-catalysts named graphitic carbon nitrides, g-C3N4. Specifically, we have performed a characterization of the melamine molecule, a building block of g-C3N4, combining X-ray photoemission (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The molecule has been studied in the gas phase, as non-interacting system, and in the solid state within a hydrogen bonded network. With the support of density functional theory (DFT) simulations of the spectra, we have found that the H-bonds mainly affect the N 1s level of the amino group, leaving the N 1s level of the pyridine-like N mostly unperturbed. This fact is responsible for a reduction of the chemical shift between the two XPS N 1s levels, compared to the free melamine. Consequently, N K-edge NEXAFS resonances involving the amino N 1s level also shift to lower photon energies. Moreover, the solid state absorption spectra have shown strong modification/quenching of resonances related with transitions from the amino N 1s level towards σ*orbitals involving the -NH2 terminations. 

National Category
Physical Sciences
Research subject
Physics with spec. in Atomic, Molecular and Condensed Matter Physics
Identifiers
URN: urn:nbn:se:uu:diva-355123OAI: oai:DiVA.org:uu-355123DiVA, id: diva2:1228915
Available from: 2018-06-29 Created: 2018-06-29 Last updated: 2018-06-29
In thesis
1.
The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.

Open Access in DiVA

No full text in DiVA

Authority records BETA

Lanzilotto, ValeriaZhang, TengSimonov, KonstantinAraujo, Carlos MoysesBrena, BarbaraPuglia, Carla

Search in DiVA

By author/editor
Lanzilotto, ValeriaZhang, TengSimonov, KonstantinAraujo, Carlos MoysesBrena, BarbaraPuglia, Carla
By organisation
Molecular and Condensed Matter PhysicsMaterials TheoryNanotechnology and Functional MaterialsTheoretical PhysicsMaterials Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 44 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf