uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Conducting polymer paper-derived separators for lithium metal batteries
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.ORCID iD: 0000-0001-6118-0226
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.ORCID iD: 0000-0003-4440-2952
Show others and affiliations
2018 (English)In: Energy Storage Materials, Vol. 13, p. 283-292Article in journal (Refereed) Published
Abstract [en]

Overoxidised polypyrrole (PPy) paper has been employed as a mesoporous separator for lithium metal batteries (LMBs) based on its narrow pore size distribution, good thermal stability, high ionic conductivity (1.1 mS cm−1 with a LP40 electrolyte) and high electrolyte wettability. The overoxidised PPy paper was produced from a PPy/cellulose composite using a combined base and heat-treatment process, yielding a highly interrupted pyrrole molecular structure including N-containing polar groups maintaining the readily adaptable mesoporous structure of the pristine PPy paper. This well-defined pore structure gave rise to a homogeneous current distribution which significantly increased the performance of a LiFePO4|Li cell. With the overoxidised PPy separator, a symmetric Li|Li cell could be cycled reversibly for more than 600 h without any short-circuits in a LP40 electrolyte. This approach facilitates the manufacturing of well-defined separators for fundamental investigations of the influence of the separator structure on the performance of LMBs.

Place, publisher, year, edition, pages
2018. Vol. 13, p. 283-292
Keywords [en]
Conducting polymers, nanocellulose, separator, porosity, lithium metal, batteries
National Category
Inorganic Chemistry Engineering and Technology
Research subject
Chemistry with specialization in Inorganic Chemistry; Chemistry with specialization in Materials Chemistry; Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
URN: urn:nbn:se:uu:diva-355543DOI: 10.1016/j.ensm.2018.02.006OAI: oai:DiVA.org:uu-355543DiVA, id: diva2:1229579
Funder
Swedish Energy Agency, TriLiSwedish Foundation for Strategic Research , RMA-110012Available from: 2018-07-01 Created: 2018-07-01 Last updated: 2018-07-04

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Wang, ZhaohuiPan, RuijunRuan, ChangqingEdström, Kristina

Search in DiVA

By author/editor
Wang, ZhaohuiPan, RuijunRuan, ChangqingEdström, KristinaStrømme, MariaNyholm, Leif
By organisation
Inorganic ChemistryNanotechnology and Functional MaterialsStructural Chemistry
Inorganic ChemistryEngineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf