uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the Applicability and Military Utility of Microsystems in Military Jet Engines
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology, Ångström Space Technology Centre (ÅSTC). Försvarshögskolan/Swedish National Defence College.
Försvarshögskolan/Swedish National Defence College.
(English)Manuscript (preprint) (Other academic)
Keywords [en]
HTCC, jet engine control, applicability, military utility
National Category
Aerospace Engineering
Identifiers
URN: urn:nbn:se:uu:diva-356691OAI: oai:DiVA.org:uu-356691DiVA, id: diva2:1236568
Available from: 2018-08-03 Created: 2018-08-03 Last updated: 2018-08-03
In thesis
1. Sense, Actuate and Survive: Ceramic Microsystems for High-Temperature Aerospace Applications
Open this publication in new window or tab >>Sense, Actuate and Survive: Ceramic Microsystems for High-Temperature Aerospace Applications
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In aerospace applications, but also in manufacturing, mining, energy industry and natural hazards, high temperature, corrosion, erosion and radiation, challenge the performance and being of hardware.

In this work, high-temperature co-fired ceramic (HTCC) alumina and platinum have been used for a range of devices intended for aerospace applications at up to 1000°C.

The thermomechanics of a pressure sensor was investigated, and the interfacing was attained by wireless powering and reading. However, read range was limited and sensitivity decreased with temperature. Silver, electroplated after sintering, was found to remedy this until it eventually alloyed with platinum.

Copper was electroplated and oxidized for oxygen storage in a microcombustor, intended for sample preparation for optogalvanic spectroscopy (OGS) to indicate extraterrestrial life. Despite delamination, caused by residual stresses, the device operated successfully.

Conversely, pre-firing metallization by integration of platinum wires was studied. Freely suspended, and despite heat-induced shape irregularities, these were found advantageous over screen printed elements for gas heating, and temperature and pressure sensing. By fusing off the wires, spherical tips, allowing for impedance monitoring of microplasma sources in, e.g., OGS, were formed.

Microplasma sources can also be used for gas heating. This, together with screen printed and suspended resistive heaters, was evaluated in a microthruster, showing that plasma heating is the most effective, implying fuel consumption reduction in satellite propulsion.

In conclusion, HTCC alumina microdevices are thermally stable and could benefit several aerospace applications, especially with the complementary metallization schemes devised here.

Future developments are expected to include both processing and design, all with the intention of sensing, actuating and surviving in high-temperature environments.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2018. p. 44
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1696
Keywords
High temperature, ceramics, microsystems, aerospace, sensors, thrusters
National Category
Aerospace Engineering Materials Engineering
Research subject
Engineering Science with specialization in Microsystems Technology
Identifiers
urn:nbn:se:uu:diva-356692 (URN)978-91-513-0392-5 (ISBN)
Public defence
2018-09-21, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:30 (Swedish)
Opponent
Supervisors
Available from: 2018-08-31 Created: 2018-08-03 Last updated: 2018-09-10

Open Access in DiVA

No full text in DiVA

By organisation
Ångström Space Technology Centre (ÅSTC)
Aerospace Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 110 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf