uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Machine Learning For Improved Detection Of Myocardial Infarction In Patients Presenting With Chest Pain In The Emergency Department
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, UCR-Uppsala Clinical Research Center.
Karolinska University Hospital, Huddinge and Karolinska Institutet, Solna, Sweden.
2018 (English)In: Journal of the American College of Cardiology, ISSN 0735-1097, E-ISSN 1558-3597, Vol. 71, no 11, p. 225-225Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
ELSEVIER SCIENCE INC , 2018. Vol. 71, no 11, p. 225-225
National Category
Cardiac and Cardiovascular Systems
Identifiers
URN: urn:nbn:se:uu:diva-357328DOI: 10.1016/S0735-1097(18)30766-6ISI: 000429659701075OAI: oai:DiVA.org:uu-357328DiVA, id: diva2:1239408
Conference
67th Annual Scientific Session and Expo of the American-College-of-Cardiology (ACC), MAR 10-12, 2018, Orlando, FL, USA
Available from: 2018-08-16 Created: 2018-08-16 Last updated: 2018-08-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Lindholm, Daniel

Search in DiVA

By author/editor
Lindholm, Daniel
By organisation
UCR-Uppsala Clinical Research Center
In the same journal
Journal of the American College of Cardiology
Cardiac and Cardiovascular Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 60 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf