uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Plasma Density Estimates From Spacecraft Potential Using MMS Observations in the Dayside Magnetosphere
Austrian Acad Sci, Space Res Inst, Graz, Austria.
Austrian Acad Sci, Space Res Inst, Graz, Austria.
Karl Franzens Univ Graz, Inst Geophys Astrophys & Meteorol, Graz, Austria.
Austrian Acad Sci, Space Res Inst, Graz, Austria.
Show others and affiliations
2018 (English)In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 4, p. 2620-2629Article in journal (Refereed) Published
Abstract [en]

Using spacecraft potential observations with and without active spacecraft potential control (on/off) from the Magnetospheric Multiscale (MMS) mission, we estimate the average photoelectron emission as well as derive the plasma density information from spacecraft potential variations and active spacecraft potential control ion current. Such estimates are of particular importance especially during periods when the plasma instruments are not in operation and also when electron density observations with higher time resolution than the ones available from particle detectors are necessary. We compare the average photoelectron emission of different spacecraft and discuss their differences. We examine several time intervals when we performed our density estimations in order to understand the strengths and weaknesses of our data set. We finally compare our derived density estimates with the plasma density observations provided by plasma detectors onboard MMS, whenever available, and discuss the overall results. The estimated electron densities should only be used as a proxy of the electron density, complimentary to the plasma moments derived by plasma detectors, especially when the latter are turned off or when higher time resolution observations are required. While the derived data set can often provide valuable information about the plasma environment, the actual values may often be very far from the actual plasma density values and should therefore be used with caution.

Place, publisher, year, edition, pages
AMER GEOPHYSICAL UNION , 2018. Vol. 123, no 4, p. 2620-2629
National Category
Fusion, Plasma and Space Physics Geophysics
Identifiers
URN: urn:nbn:se:uu:diva-357761DOI: 10.1002/2017JA025086ISI: 000433498400011OAI: oai:DiVA.org:uu-357761DiVA, id: diva2:1241212
Available from: 2018-08-23 Created: 2018-08-23 Last updated: 2018-08-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Khotyaintsev, Yuri V.

Search in DiVA

By author/editor
Baumjohann, WolfgangKhotyaintsev, Yuri V.
By organisation
Swedish Institute of Space Physics, Uppsala Division
In the same journal
Journal of Geophysical Research - Space Physics
Fusion, Plasma and Space PhysicsGeophysics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 86 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf